Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Увеличение концентрации бе жа

    На нижеследующем примере описывается этот метод 120 частей диэтилсульфата, 120 частей нитрита натрия и 160 частей воды хорошо взбалтывают в течение 20 мин. в трясучке. Выход нитроэтана составляет 43—65% с учетом регенерированного диалкилсульфата. Увеличение концентрации нитрита снижает выход нитропарафина. [c.316]

    Такой вывод косвенно подтверждается слабо выраженным и почти линейным уменьшением диэлектрической проницаемости раствора при увеличении концентрации электролита вплоть до 0,5—1,0 М растворов. Дальнейшее повышение концентрации электролита приводит к некоторому замедлению спада диэлектрической проницаемости и отклонению экспериментальной кривой от прямой линии в сторону больших величин диэлектрической проницаемости. Предполагается, что такой ход кривых е — с обусловлен наложением эффектов упорядочения структуры воды и ее разрушения под действием введенных ионов. Если рассматривать воду как систему, состоящую из квазикристаллических образований, то при введении первых порций электролита наиболее заметно проявляется их упорядочивающее действие — образование внутреннего сольватного (замороженного) слоя молекул воды, частичная ориентация молекул воды во внешнем сольватном слое, уменьшение свободного объема жидкости. Все эти эффекты охватывают главным образом преобладающую аморфную форму воды, связь между молекулами в которой слабее, чем в квазикристаллических образованиях, и приводят к уменьшению энтропии. При возрастании концентрации электролита, когда значительная часть аморфной воды становится [c.64]


    Кинетические выражения, подобные тем, с которыми мы имели дело до сих пор, хорошо обоснованы теоретически для случая гомогенных реакций. Часто они с успехом используются и для корреляции экспериментальных данных по кинетике гетерогенно-каталитических реакций. Возникает, однако, опасность, что кинетическое выражение, имеющее слабое теоретическое обоснование, будет хорошо описывать имеющиеся неполные кинетические данные, тогда как его экстраполяция приведет к неправильным выводам. Так, для процесса, рассмотренного в упражнении IV. 15, опыты, проведенные нри A i // 2 <С 1> могли бы подтвердить кинетическую зависимость г = кЬа, к = k- k ajk - Отсюда можно сделать вывод, что скорость реакции неограниченно возрастает с увеличением концентрации 6 на самом же деле она достигает предельного значения k a d, когда к- Ык становится велико по сравнению с единицей. Другой пример — обратимая реакция из упражнения IV.17. Если опыты проводятся вдали от равновесия, их результаты будут хорошо описываться выражением из упражнения IV.16, так как отношение к е/к будет мало. Поскольку реакция обратима, исследователь [c.80]

    У всех электролитов коэффициенты активности для бесконечно разбавленных растворов равны единице. С увеличением концентрации коэффициент активности постепенно уменьшается и при некотором ее значении, зависящем от природы электролита и от температуры раствора, становится минимальным. Дальнейший рост концентрации ведет к повышению коэффициента активности и в [c.79]

    Острое отравление наступает через 5—10 мин при вдыхании воздуха, в котором концентрация паров бензина составляет 35—40 мг л. При вдыхании воздуха с меньшими концентрациями отравление происходит через некоторый промежуток времени. Появляются гэлов-ная боль, неприятное ощущение в горле, кашель, раздражение слизистой оболочки носа и глаз. При дальнейшем пребывании в такой атмосфере, а также при увеличении концентрации паров бензина признаки отравления усиливаются, наступают неустойчивость по-232 [c.232]

    Значение коэффициента скольжения определяется экспериментально. Оно зависит от концентрации твердого материала (с увеличением концентрации значение коэффициента скольжения уменьшается). [c.83]

    С целью увеличения концентрации его или удаления мешающих определению кислот (обычно НЫОз), нейтрализация кислот и создание требуемого при осаждении pH, прибавление маскирующих средств для связывания в комплексы мешающих ионов и т. д. Наконец, когда ни регулированием pH, ни маскировкой не удается устранить помехи, связанные с присутствием тех или иных посто-ронг их ионов в растворе, эти ионы предварительно отделяют от определяемого иона. Упаривать растворы лучше на водяной бане (иногда используют и песочную баню). [c.139]


    Увеличение превращения за ступень Увеличение содержания инертов Увеличение температуры Увеличение концентрации Со Увеличение содержания СО Увеличение скорости газа [c.104]

    В реактивном топливе может раствориться сравнительно большое количество кислорода (до 25% объемных), и, следовательно, влияние его на противоизносные свойства должно быть значительным. Процессы трения в зависимости от содержания кислорода развиваются по-разному при качении и скольжении (рис. 37). При качении чем глубже очистка топлива от кислорода, тем лучше становятся его противоизносные свойства. При скольжении существует оптимальная концентрация кислорода, при которой противоизносные свойства топлива будут наиболее высокими. Уменьшение нли увеличение концентрации кислорода в сравнении с оптимальной приводит к ухудшению противоизносных свойств топлива. [c.66]

    Наконец, большое значение при маскировке, как и при осаждении, имеет величина pH раствора. Это наблюдается всегда, когда лигандами в данном комплексном ионе являются молекулы или иопы, способные связываться Н+-ионами. Таковы, например, молекулы аммиака, образующие с Н"" катионы NHI, а также анионы слабых кислот, например цианистоводородной, винной, лимонной, диметилглиоксима и т. д. Во всех этих случаях увеличение концентрации ионов водорода, т. е. понижение величины pH раствора, сопровождается разложением комплекса и делает маскировку соответствующих катионов невозможной. С этим мы неоднократно встречались в качественном анализе. Например, подкисление аммиачного раствора, содержащего комплексную со ь [Ag(NH3)2] l, вызывает разложение комплексного иона  [c.96]

    Перенапряжение водорода очень чувствительно к присутствию в электролите посторонних веществ. Добавки солей к разбавленным растворам кислот увеличивают перенапряжение водорода на ртути, причем увеличение концентрации 1—1-зарядного электролита (при постоянном pH) в 10 раз повышает т] примерно на 55— 58-10 В. Первоначальная добавка электролита с поливалентным катионом оказывает большее действие, чем такая же добавка 1—1-зарядного электролита. Соединения с поверхностно-активными анионами сильнее всего влияют на водородное перенапряжение на ртути в области малых плотностей тока, снижая его на десятые доли вольта. Поверхностно-активные катионы, наоборот, повышают перенапряжение водорода на ртути в широких пределах плотностей тока. Поверхностно-активные молекулярные вещества или повышают, или понижают в зависимости от их природы, величину Т1Н на ртути. Действие этих добавок ослабляется с ростом плотности тока и при высоких ее значениях полностью исчезает. Перенапряжение водорода на платине, железе и никеле также возрастает при введении поверхностно-активных веществ. Характер влияния поверхностно-активных веществ на водородное перенапряжение и на этих металлах является функцией потенциала электрода. В случае железа, на котором перенапряжение водорода в кислых средах слабо зависит от pH, присутствие в ]застворе поверхностно-активных катионов не только увеличивает перенапряжение, но и изменяет характер связи между г)н и pH. [c.401]

    В некоторых колоннах применяется ПЦО под глухой тарелкой (см. рис. 111-12, тип в). Такое орошение требует максимального отвода тепла в каждой секции колонны, что в итоге приводит к увеличению концентраций тяжелых компонентов в дистилляте и легких в боковых погонах, т. е. к ухудшению четкости ректификации. Кроме того, в схеме орошения с глухой тарелкой невозможно частично отводить тепло по секциям, т. е. регулировать флегмовые числа по высоте колонны. Поэтому применение схем ПЦО под глухой тарелкой нецелесообразно. [c.167]

    Из этого уравнения видно, что с увеличением концентрации Н+, т. е. с уменьшением pH раствора, концентрация 0Н уменьшается. Но от концентрации ОН зависит растворимость гидроокиси, т. е, [c.84]

    Как следует из сказанного выше, в аналитической практике всегда приходится считаться с растворяющим действием кислот, так как увеличение концентрации водородных ионов приводит к увеличению растворимости осадков. [c.94]

    Влияние концентрации. Адсорбция тех или иных молекул или ионов возрастает с увеличением их концентрации в растворе, однако не пропорционально концентрации, а более медленно, как следует из рис. 16. По изотерме адсорбции (см. риС. 16) можно установить, что 1) степень адсорбции падает с увеличением концентрации вещества в растворе 2) с увеличением концентрации вещества в растворе увеличивается абсолютное количество адсорбированного вещества и 3) с увеличением концентрации вещества в растворе количество адсорбированного вещества стремится к некоторому конечному значению. [c.111]

    Соли молибдена (VI) с роданидом аммония или к злия, в зависимости от концентрации последнего, в присутствии восстано- ителя образуют несколько роданидных комплексных соединений. Наиболее интенсивно окрашенным из них является роданид молибдена (V) Mo(S N)s, поэтому при определении нужно обеспечить достаточную концентрацию роданида. С другой стороны, очень большое увеличение концентрации лиганда снижает чувствительность реакции, так как может образоваться менее интенсивно окрашенный комплексный ион Mo(S N) g. [c.490]


    При данном значении потенциала электрода скорость процесса электролитического восстановления (или окисления) обычно растет с увеличением концентрации разряжающи.хея частиц. Однако такая простая зависимость наблюдается не всегда. В кинетических уравнения.ч, описывающих реакции электровосстановления (или электроокисления), концентрации исходных веществ могут входить со степенями, большими единицы, равными нулю или правильной дроби. В уравнеиия, описывающие кинетику электровосстановления органически.х соединений, их объемная концентрация в.ходит обычно в дробной степени. [c.434]

    Нужно, однако, учесть, что наряду с ослаблением адсорбции вследствие уменьшения общей поверхности осадка происходит и у иление ее в результате увеличения концентрации адсорбируемых [c.106]

    За внешней плоскостью Гельмгольца располагается диффузный слой с потенциалом, изменяющимся от г )г до нуля и с плотностью заряда, совпадающей с <72. Схематическое изображение строения двойного слоя по Грэму для незарял енной поверхности, заряженной отрицательно п положительно, дано на рис. 12.5. В соответствии с допущением Грэма о том, что следует считаться лишь с поверхностной активностью анионов (в системах, не содержащих органических растворенных веществ), в первой плоскости Гельмгольца находятся только специфически адсорбирующиеся анионы, причем их поверхностная концентрация растет при переходе от незаряженной поверхности (рис. 12.5, а) к заряженной положительно (рнс. 12.5, б). Грэм подчеркивает, чго это увеличение концентрации следует отнести прежде всего за счет упрочнения ковалентной связи, а не за счет сил кулоновского взаимодействия. При достаточно отрицательном заряде поверхности (рис. 12,5, в) во внутреннем слое Гельмгольца остается лишь растворитель, и заряд его, так же как н в растворе, не содержащем поверхностно-активных [c.271]

    Если скорость реакции оценивается увеличением концентрации одного из продуктов реакции, то производная берется со знаком плюс. [c.193]

    Согласно принципу Ле Шателье, степень гидролиза возрастает с разбавлением раствора (увеличением концентрации воды). Например, при 25°С для реакции [c.212]

    О механизме реакции сульфохлорирования имеются также фотохимические исследования Шумахера и Штауффа [И]. Они изучали реацию взаимодействия н-гептана, двуокиси серы и хлора в растворе четыреххлористого углерода и установили, что квантовый выход при 25° составляет примерно 35 000. В результате систематических исследований было найдено, что скорость образования гептилсульфохлорида пропорциональна корню из интенсивности света и первой степени концентрации гептана. Что же касается влияния концентрации двуокиси серы, то после достижения известной небольшой концентрации ее скорость образования гептансульфохлорида не зависит от дальнейшего увеличения концентрации двуокиси серы. [c.367]

    Величина сортности для эталонных топлив установлена опытным путем при испытании их на одноцилиндровых установках с различными цилиндрами серийных авиационных двигателей. При этих испытаниях на каждом эталонном топливе путем увеличения наддува двигатель доводили до появления детонации и замеряли мощность, которая по существу являлась максимально возможной для каждого эталона. Мощность, полученная при работе на чистом эталонном изооктане, принята за 100% смеси же изооктана с тетраэтилсвинцом позволяли снимать большую дющность, причем с увеличением концентрации тетраэтилсвинца возрастала и величина максимально возможной мощности. Было установлено, что чистый изооктан имеет-сортность 100, изооктан с концентрацией тетраэтилсвинца 0,76 лл/кг имеет сортность 130 и т. д. (см. рис. 54). [c.102]

    Из этих уравнений видно, что по мере увеличения концентраций и Ре + ионов и уменьшения концентраций Ре +- и 5п2+-ионоп в результате течения реакции потенциал первой пары, который был первоначально меньше, должен постепенно увеличиваться, а потенциал второй пары — уменьшаться. В конце концов эти потенциалы сравняются. [c.357]

    Окисление пропилена в присутствии СиО на Si — реакция первого порядка по отношению к кислороду и нулевого порядка по отношению к пропилену [69], поэтому скорость окисления возрастает с увеличением концентрации кислорода [64]. Селективность образования акролеина повышается с ростом концентрации пропилена [64—66]. Водяной пар является лучшим разбавителем по сравнению с пропаном или азотом (при конверсии 6% оптимальный выход 70%) [70—71]. Образование СОа уменьшается при введении водяного пара. Тем самым повышается и селективность оптимальная концентрация пропилена будет 10% [72]. Лучше всего действует добавка 40% водяного пара (при 340—400 °С), выше этого цоказателя катализатор становится нестойким [73]. [c.97]

    Значения степени диссоциацги а, полученные указанными методами, лучн1е всего совпадают б случае разбавленных растворов 1 — 1-зарядного электролита. При увеличении концентрации элект- [c.42]

    Числа переноса измсняютс с кспцентрацией в меньшей степени, чем электропроводность электролитов. Некоторые опытные данные, характеризующие зависимость чисел переноса от концентрации, приведены в табл. 4.3 . Из нее след ет, что если число переноса больше 0,5, то с ростом концентрации наблюдается его дальнейшее увеличение. Напротив, если меньше 0,5, то по мере увеличения концентрации оно становится еще меньше. В концентрированных растворах числа переноса могут принимать отрицательные значения, что объясняется образованием сложных комплексов ионов. Так, например, для цианида серебра в избытке цианида калия число переноса ионов Ag будет отрицательным. Здесь серебро входит в состав комплексного аниона, и при пропускании тока перемещается к аноду. [c.114]

    При увеличении концентраци это различиг возрастает, его следует учитывать, пользуясь соотношениями, вытекающими из табл. 3.2, 3.3 и из уравнений для химических потенциалов (3.3) — (3.5)  [c.76]

    Предельный закон Дебая —Гюкеля дает верные значения коэффициентов активности 1 — 1-зар)1Дного электролита (хлорида иатрия), особенно в очень разбавленных растворах (см. табл. 3.7). По мере увеличения концентрации сходимость теории с опытом ухудшается. В случае 2—2-зарядпого электролита (сульфата цинка) уже при самых малых конце1[трациях наблюдается расхождение между вычисленными и опытными коэффициентами активности [c.90]

    Уравнение (3.74) показывает, что ст( пень ассоциации растет при увеличении концентрации и зарядов ионов и прп уменынещш их радиусов и диэлектрической проинцаемости растворителя. [c.98]

    В водных (и в большинстве неводных) растворах электропроводность электролитов при повышении концентрацни раствора сначала увеличивается, достигает некэторого максимума и затем, при дальнейшем увеличении концентрации, уменьшается. Положение максимума зависит от природы электролита и его температуры. Зависимость электропроводности от концентрации показана для ряда электролитов на рис. 4.2. [c.112]

    Образовавшиеся кислоты реагируют со щелочью калия и образуют соли. После окончания реакции окисления непрореа-гнронавшнй перманганат калия обесцвечивался древесным спиртом. Образовавшиеся в результате реакции соли калия органических кислот фильтрацией отделяли от двуокиси марганца, который несколько раз промывался горячей водой. Фильтрат, с целью увеличения концентрации выпаривался на водяной бане. Из солей калия органических кислот, действием на них минеральной кислоты, были получены соответствующие органические кислоты. Так как во фракции, взятой для окисления, ожидалось присутствие этилбензола и трех изомеров ксилола, в результате окисления которых должны были получать 4 кислоты разного строения, поэтому мы долж- [c.68]

    С целью увеличения концентрации фильтрат испарялся на водяной бане до малого объема и после остывания к нему была добавлена соляная кислота до кислой реакции. Образовавшийся белый осадок бензойной кислоты, после перекристаллизации из горячей воды плавился при 119—120°С. Температура плавления синтетической бензойной кислоты равна 120—12Г, смесь синтетического и нашего препарата плавилась ири 120—12ГС. Идентифицирование толуола в виде бензойной кислоты указывает иа присутствие метилциклогексана в норийском бензине. [c.73]

    Концентрация положительных ионов может увеличиваться также при растворении соединений, содержащих о ин-ионы. К таким соединениям относятся производные оксония для водных сред (например, ОНзС , OH.,NOg), производные аммония для жидкого аммиака (например, NH4 I, NH4NO3) и т. д. В этом случае увеличение концентрации положительных ионов растворителя не является результатом основно-кислотного взаимодействия, а связано с простой диссоциацией. [c.133]

    Во всех трех рассмотренных типичных случаях неограниченно растворимых систем парциальные давления наров компонентов растут с увеличением концентрации. Это замечание не может быть отнесено к суммарному давлению паров раствора. Системы с положительными или отрицательными отклонениями от свойств простейшего раствора, обладающие экстремальными, максимальными или минимальными точками на кривых давления паров раствора, называются постоянно кипящими или ааеотропными смесями, однородными 6 жидкой фазе. [c.38]


Смотреть страницы где упоминается термин Увеличение концентрации бе жа: [c.6]    [c.12]    [c.12]    [c.89]    [c.91]    [c.109]    [c.183]    [c.355]    [c.80]    [c.90]    [c.124]    [c.261]    [c.269]    [c.310]    [c.422]    [c.428]   
Смотреть главы в:

Переключение генов -> Увеличение концентрации бе жа




ПОИСК





Смотрите так же термины и статьи:

Увеличение



© 2025 chem21.info Реклама на сайте