Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пламя водородное тепловое излучение

    Несколько иной механизм действия органических растворителей в случае комбинированных горелок-распылителей з . Здесь увеличение интенсивности излучения для некоторых металлов доходит до 10-кратного, а увеличение поглощения света (для линии никеля с длиной волны 341,5 ммк) до 36-кратного . При введении в пламя органического растворителя значительно увеличивается объем пламени . Температура пламени снижается на 90—250° С при введении в пламя водных растворов (в отдельных случаях отмечалось снижение до 2600° С для пламени дициан-кислород и до 900° С для кислородно-водородного пламени з). При введении органических растворителей температура пламени снижается меньше. Таким образом, температура пламени при использовании органических растворителей выше, чем при использовании водных растворов (для кислородно-водородного пламени она составляет 2810° С с первыми и 2700° С со вторыми). К этому следует добавить более эффективное использование вещества в капельках аэрозоля за счет теплового эффекта сгорания орх анического растворителя. Все эти факторы следует рассматривать как дополнительно увеличивающие концентрацию атомов определяемого элемента в пламени и их свечение. При введении в пламя смесей водород — кислород или ацетилен — кислород растворов солей и элементов в органических [c.88]


    Скорость парообразования и горения над резервуарами, из которых происходит утечка горючего, представляет большой практический интерес. Как следует из данных табл. 12.1, по объемной скорости испарения и скорости горения рассматриваемые горючие располагаются в следующей последовательности водород — метан — топливо ТС-1. Следовательно, для данного объема утечки керосиновое пламя будет существовать дольше, чем водородное пламя. Энергия теплового излучения от этих пламен может быть вычислена умножением скорости горения на плотность жидкости при нормальной температуре кипения на высшую удельную теплоту сгорания и на долю тепловой энергии, излучаемой пламенем в окружающее пространство. Вычисления (с использованием данных табл. 12.1) показывают, что излучаемая тепловая энергия может достигать 276 Вт/см с поверхности раздела жидкость — пар резервуара для водорода, 155 — для метана и 212 —для топлива ТС-1. Водородное пламя горячее углеводородного, но углеводороды будут продолжать гореть в 5—10 раз дольше, чем водород для эквивалентных объемов утечки. [c.621]

    Водородное пламя обладает слабой светимостью. Коэффициент его светимости составляет примерно 0,01—0,1 против примерно 1,0 для углеводородных пламен и зависит, в первую очередь, от размера пламени и его температуры. Несмотря на малый коэффициент светимости, тепловое излучение при горении жидкого водорода может достигать того же значения, что у обычных углеводородов, так как низкая теплота испарения способствует образованию более мощного пламени. [c.267]

    Реакционная зона в апетилено-воздушном и водородно-воздушном пламенах имеет весьма незначительную толщину — порядка десятой доли миллиметра. В ней протекают химические реакции, служащие источником энергии, за счет которой и происходит нагревание газов в факеле пламени. Эти процессы неравновесны и могут быть рассчитаны только методами химической кинетики. Для расчета же химического состава пламени и его температуры за пределами реакционной зоны можно привлечь методы классической химической термодинамики, а также экспериментальные методы определения температуры, основанные на использовании законов теплового излучения, с теми оговорками, которые были упомянуты в разд. 1.6 (например, метод обращения и т. п.). Для выполнения термодинамических расчетов необходимо знать состав горючей смеси. Это возможно, если учитывать только поступление газов из системы питания. Однако пламена, используемые в атомно-абсорбционной спектроскопии, горят непосредственно в атмосфере (пламена открытого типа), благодаря чему происходит дополнительное поступление в зону [c.54]



Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.622 ]




ПОИСК





Смотрите так же термины и статьи:

Тепловое излучение Излучение



© 2024 chem21.info Реклама на сайте