Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкоза как источник энергии

    Крахмал — один из продуктов фотосинтеза, главное запасное питательное вещество растений. Остатки глюкозы в молекулах крахмала соединены достаточно прочно и в то же время под действием ферментов легко могут отщепляться, как только возникает потребность в источнике энергии. [c.625]

    При биологическом использовании глюкозы в качестве источника энергии ее сгорание протекает не в одну стадию. Разложение глюкозы представляет собой сложный процесс, включающий более 25 стадий. На многих из этих стадий высвобождаемая энергия запасается путем синтеза молекул АТФ. Анаэробная ферментация, или гликолиз, обеспечивает предварительное разложение глюкозы с образованием пировиноградной кислоты, а цикл лимонной кислоты завершает окисление углерода в СО2. Атомы водорода передаются молекулам-переносчикам, НАД и ФАД. Эти молекулы повторно окисляются в дыхательной цепи, где происходит дальнейшее запасание энергии путем синтеза новых молекул АТФ, а атомы водорода используются для восстановления О2 в Н2О. [c.338]


    Содержащиеся в пищевых продуктах жиры и углеводы служат основными источниками энергии. Чистые жиры обладают калорийностью (теплотой сгорания) 37,6 кДж-г-, чистые углеводы (сахар) имеют калорийность около 17 кДж-г (крахмал—17,5, сахароза—16,5 и глюкоза— 15,6). Калорийность пищевых продуктов определяют при помощи калориметрической бомбы, как описано в приложении VI. Третьей основной составной частью пищевых продуктов являются белки, необходимые главным образом для обеспечения роста и восстановления тканей. Взрослому человеку среднего роста необходимо получать ежедневно около 50 г белков. Обычно же человек потребляет несколько больше— 80 г калорийность этого количества составляет примерно 1400 кДж, поскольку теплота сгорания белка равна около 18 кДж-г . Таким образом, за счет жиров и углеводов человек должен получать около 10 600 кДж из 12 000 кДж, необходимых ему ежедневно. Обычно же человек за счет жиров получает около одной трети от общего количества необходимой энергии (100 г дает 3760 кДж), а за счет углеводов около 60%. Люди, выполняющие очень тяжелую физическую работу, например лесорубы или исследователи Арктики, нуждающиеся в усиленном питании, могут повысить суточное потребление жиров до 250 г жиры — более концентрированный источник энергии, чем углеводы. [c.406]

    Крахмал первоначально подвергается воздействию находящегося в слюне фермента, птиалина, но в основном гидролиз крахмала происходит в тонком кишечнике, где под действием ферментов поджелудочной железы и других высокоактивных ферментов крахмал превращается в глюкозу. Часть простых сахаров, к числу которых относится глюкоза, переносится кровью в печень, где происходит их отложение в составе гликогена. Другая часть сахаров поступает непосредственно в общий кровоток, где они сгорают с выделением энергии, превращаются в жиры либо накапливаются в мышцах в виде гликогена. Гликоген может высвобождаться при первой же необходимости и служит источником энергии. Метаболизм углеводов регулируется таким гормоном, как инсулин. Механизмы превращения углеводов в СО2 и Н2О очень сложны и не будут рассматриваться в данной книге. [c.486]

Рис. 18.8. Схематическая диаграмма некоторых превращений свободной энергии в процессе метаболизма живой клетки. Окисление глюкозы с образованием СО и Н2О приводит к выделению свободной энергии. Выделившаяся свободная энергия идет на превращение АДФ в более энергоемкое вещество АТФ. Молекулы АТФ затем используются по мере необходимости как источник энергии для превращения простых молекул в более сложные составные части живой клетки. Когда молекула АТФ выделяет свободную энергию, она превращается в молекулу АДФ. Рис. 18.8. <a href="/info/96413">Схематическая диаграмма</a> некоторых превращений <a href="/info/3896">свободной энергии</a> в процессе метаболизма <a href="/info/951384">живой клетки</a>. <a href="/info/16188">Окисление глюкозы</a> с образованием СО и Н2О приводит к выделению <a href="/info/3896">свободной энергии</a>. Выделившаяся <a href="/info/3896">свободная энергия</a> идет на превращение АДФ в более энергоемкое вещество АТФ. Молекулы АТФ затем используются по мере необходимости как <a href="/info/188487">источник энергии</a> для превращения <a href="/info/524761">простых молекул</a> в более <a href="/info/1081104">сложные составные части</a> <a href="/info/951384">живой клетки</a>. Когда молекула АТФ выделяет <a href="/info/3896">свободную энергию</a>, она превращается в молекулу АДФ.

    В оценке биохимической роли углеводов в последние десятилетия произошли серьезные изменения. Если раньше углеводы рассматривали лишь как источники энергии для животных организмов (глюкоза гликоген как резервное вещество) и пассивный строительный материал для создания остова растительных клеток (клетчатка), то в настоящее время знают о многих других функциях углеводов. [c.304]

    Одним из основных источников энергии в живом организме является окисление глюкозы  [c.52]

    В зеленых листьях растений в результате взаимодействия двух простых соединений — углекислого газа и воды — образуется один из сахаров, (- -)-глю-коза. Этот процесс, известный под названием фотосинтеза, требует наличия катализатора, зеленого красителя хлорофилла, и происходит при освещении (источник энергии). Тысячи молекул (+)-глюкозы могут объединяться в молекулы гораздо большего размера — целлюлозу, которая является основным строительным материалом растений. Молекулы (+)-глюкозы могут также соединяться иным способом, давая большие молекулы крахмала, который хранится в семенах как запас питательных веществ для нового растущего растения. [c.931]

    Кетоновые тела в отличие от жирных кислот могут проходить через гематоэнцефалический барьер, так как являются гидрофильными молекулами, и служат наряду с глюкозой источником энергии для нервной ткани, особенно после 3—5 дней голодания, когда концентрация кетоновых тел в крови существенно увеличивается (рис. 8.7). [c.189]

    Затем в растениях глюкоза превращается в крахмал или целлюлозу — их основную структурную часть. Сахароза и крахмал быстро усваиваются человеческим организмом, что делает их удобной формой для запаса энергии. Целлюлоза же не усваивается в организме человека, поскольку отличается от крахмала по способу соединения остатков сахаров друг с другом (рис. 1У.5). Из-за такой структуры большинство животных (за исключением жвачных животных, многих насекомых, в том числе термитов) не могут использовать целлюлозу как источник энергии. Неперевариваемая человеком клетчатка играет, однако, важную роль в поддержании нормального состояния желудочно-кишечного тракта. [c.246]

    В данной главе мы бросили беглый взгляд не некоторые важнейшие составляющие биосферы-той части физического мира, в которой протекают жизненные циклы организмов. Наряду с соответствующими условиями окружающей среды для поддержания жизни необходим какой-либо источник энергии. Первичным источником необходимой энергии является Солнце. В процессе фотосинтеза растения превращают солнечную энергию в химическую. Солнечная энергия поглощается растительным пигментом хлорофиллом и затем используется для образования углевода глюкозы и О2 из СО2 и Н2О. [c.464]

    Роль важного регуляторного агента в бактериальных клетках играет циклический АМР (сАМР, гл. 7, разд, Д, 8). Примером процесса, опосредованного участием сАМР, может служить катаболитная репрессия. Сущность этого процесса состоит в ингибировании (катаболитом) транскрипции генов, детерминирующих синтез ферментов, необходимых для катаболизма лактозы или других энергетических субстратов, когда в среде присутствует глюкоза — более эффективный источник энергии. Механизм этого процесса не известен, однако установлено, что в присутствии глюкозы концентрация сАМР снижается. [c.204]

    Более гибким механизмом является обратимое взаимопревращение активных и неактивных форм ферментов. Яркий пример такого механизма представляет собой реакция фосфорилазы. Фермент катализирует обратимое присоединение глюкозы (в виде глюкозо-1-фосфата) к полисахариду гликогену, представляющему собой ту молекулярную форму, в которой животные запасают углеводы и тем самым легко доступные источники энергии. Фосфорилаза, таким образом, держит ключи от этого склада энер- [c.536]

    Глюкозу называют также виноградным сахаром, поскольку она содержится в виноградном соке. Глюкоза находится также в других сладких плодах и вообще в разных частях растений. Не менее распространена глюкоза и в животном мире. Она содержится в крови (0,1 % , разносится по всему телу и служит основным источником энергии для организма. [c.302]

    Наиболее распространенный в природе моносахарид — глюкоза. Она находится в соке винограда (отсюда название виноградный сахар), в других сладких плодах. Около 0,1 % глюкозы постоянно содержится в крови человека и животных она разносится кровью по всему телу и служит источником энергии для организма. Глюкоза входит в состав важнейших ди- и полисахаридов. [c.317]

    D-глюкоза (виноградный сахар) широко распространена в природе содержится в винограде и других пледах, в меде. Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии [c.618]

    Белок-активатор катаболитных оперонов (БАК) в комплексе с циклическим сАМР активирует транскрипцию большого числа оперонов, отвечающих за расщепление различных соединений, преимущественно сахаров, используемых бактериальной клеткой в качестве источников энергии и углерода. Концентрация с АЛ Р в клетках повышается при росте на плохо усваиваемых источниках, например ацетате или глицерине, и снижается при росте на легко усваиваемых, например глюкозе. Поэтому система регуляции с помощью БАК-сАМР позволяет клетке включать опероны катаболизма лишь по мере истощения более легко усваиваемых пищевых веществ. [c.148]

    О-глюкоза — ОСНОВНОЙ источник энергии живых организмов. При гликолизе 1 г/моля глюкозы выделяется 196,3 кДж. Ферментативное расщепление глюкозы в живой клетке протекает до образования молочной кислоты, сопряженной с образованием аденозинтрифосфорной кислоты (АТФ). [c.102]


    Хранят в хорошо закупоренных банках, в сухом месте. Применяют в виде порошка и 40%-ных растворов в ампулах по 10,25, 50 мл, а также в смеси с аскорбиновой кислотой. При внутривенном или подкожном введении изотонического (5—5,5%) раствора глюкозы повышаются функции всех клеток организма, для которых глюкоза является питательным материалом и источником энергии. [c.531]

    Углеводы стоят в начале и в конце этого грандиозного, непрерывно проходящего через биосферу потока энергии и энтропии главными продуктами фотосинтеза являются гексозы, а главным источником энергии, удовлетворяющей повседневные потребности всех живых организмов, служит В-глюкоза. [c.137]

    По содержанию ионов К и Ка цереброспинальная жидкость практически не отличается от плазмы крови. Ионов Са в ней почти в 2 раза меньше, чем в плазме крови. Содержание ионов СГ заметно выше, а концентрация ионов бикарбоната несколько ниже в цереброспинальной жидкости, чем в плазме. Таким образом, минеральный состав цереброспинальной жидкости имеет характерные особенности и отличается от такового плазмы крови. Все это дает основание считать, что проникновение веществ через мембрану сосудистого эндотелия нервной системы — активный биохимический процесс. Источниками энергии для активного транспорта служат процесс аэробного окисления глюкозы и лишь в незначительной степени гликолиз. [c.644]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]

    Поскольку при полном обороте цикла трикарбоновых кислот расход каждой молекулы щавелевоуксусной кислоты компенсируется генерированием новой ее молекулы, убыли щавелевоуксусной кислоты при работе цикла в конечном итоге не происходит. Однако щавелевоуксусная кислота активно включается в другие метаболические пути. Происходящие при этом потери щавелевоуксусной кислоты могут быть компенсированы ее синтезом из пирувата и СО2 в реакции, использующей АТР в качестве источника энергии. На рис. 7-1 реакция показана штриховой линией, направленной от пирувата в правый угол внизу. Сам же пируват образуется при расщеплении углеводов, таких, как глюкоза. [c.84]

    Важным примером делокализации и поглощения энергии является хлорофилл, который обсуждался в послесловии к гл. 20. Ароматическое кольцо, окружающее ион Mg , представляет собой протяженную делокализо-ванную систему, образуемую порфирином (см. рис. 20-19). Электронные энергетические уровни этой системы обусловливают поглощение света с одним максимумом в фиолетовой области, при 430 нм, и вторым максимумом в красной области, при 690 нм (см. рис. 20-22). При поглощении света молекулой хлорофилла ее электрон возбуждается на более высокий уровень это позволяет хлорофиллу восстанавливать ионы Ге " в ферре-доксине, белке с молекулярной массой 13000, который содержит два атома железа, координированные к сере. Последующее окисление ферредоксина служит источником энергии для протекания других реакций, которые в конце концов приводят к расщеплению воды, восстановлению диоксида углерода и, наконец, к синтезу глюкозы, С НиОв. [c.307]

    Механизм развития гипергликемии после введения глюкокортикоидов включает, кроме того, снижение синтеза гликогена в мышцах, торможение окисления глюкозы в тканях и усиление распада жиров (соответственно сохранение запасов глюкозы, так как в качестве источника энергии используются свободные жирные кислоты). [c.277]

    Установлено, что окисление жирных кислот протекает в печени, почках, скелетных и сердечной мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна основным источником энергии в мозговой ткани служит глюкоза. [c.373]

    Сахароза состоит из двух моносахаридов — глюкозы и фруктозы. Моно- и дисахариды служат источником энергии в клетках (см. далее). [c.91]

    Основное направление использования целлюлозы (рис. 18.2) как в настоящем, так и в будущем — производство волокнистых полуфабрикатов для бумаги (см. 16), искусственных волокон и других производных целлюлозы (см. 17). При этом переходящие в раствор часть полиоз и основное количество лигнина, в том числе в виде продуктов деструкции, находятся в отработанных варочных щелоках. Органические вещества щелоков могут служить источником энергии или же находить другое полезное применение, в том числе путем дальнейшей переработки (см. 18.5 18.6). Целлюлоза может также использоваться и путем деструкции до глюкозы — первой и наиболее важной ступени превращений целлюлозы в низкомолекулярные продукты, открывающей широкие возможности для получения различных химических продуктов, в том числе перспективных в качестве сырья для синтеза новых полимеров вместо природного газа и нефтехимикатов (см. рис. 18.2). [c.408]

    На каждый моль израсходованной глюкозы (180 г) выделя ется 2870 кДж (672 ккал) энергии. Дыхание наряду с фото синтезом является важнейшим источником энергии для живы организмов. [c.44]

    Биохимические процессы редко бывают простыми. Рассмотрим освобождение энергии из дисахаридов и полисахаридов. Эти углеводы распадаются в желудочно-кишечном тракте до глюкозы, С Н,205, являюшейся первичным источником энергии в живых системах. [c.254]

    Темиовые реакции синтеза глюкозы, которые в конце концов привели к циклу Кальвина-Бенсона. Всякий организм, способный использовать внешний источник энергии для получения своих собственных молекул с большой свободной энергией, которые могут использоваться впоследствии, имеет огромное преимущество над другими организмами, лишенными подобных свойств. Первым внешним источником энергии не обязательно должен был быть солнечный свет. [c.336]

    Очевидно, свет, поглощаемый зелеными растениями, превращает АДФ в АТФ и НАДФ+ в НАДФН. При участии АТФ в качестве источника энергии и НАДФН как восстановителя (источника атомов водорода) могут затем происходить реакции, приводящие к превращению воды и двуокиси углерода в глюкозу [c.403]

    ГЛЮКОЗА (декстроза, виноградный сахар) iHi206, моносахарид сладкого вк,уса (структурную ф-лу см, в ст, Мута-ротация). В природе распростр, D-Г, для ее а- и -аноме-ров Гпл 146 и 148—150 °С, [ ]d +112 и +18,7° соотв,, равновесное [а]о +52,7° раств, в воде (в 100 мл 82 г при 25 С и 154 г при 15 °С), Содержится в соке растений и в кровн структурный фрагмент мн, олиго- и полисахаридов. Гл. источник энергии для большинства организмов, Получ, кислотным или ферментативным гидролизом крахмала или целлюлозы. Сырье в произ-ве витамина С, глюконата Са входит в состав напитков и конд, изделий питат. в-во и компонент кровезаменителей в медицине, [c.139]

    Фотохимическое восстановление СОг в органические соединения слу-, жит основным источником энергии для биосферы, несмотря на то что к числу организмов, в которых идет этот процесс, относится лишь несколько родов фотосинтезирующих бактерий (табл. 1-1) (включая сине-зеленые водоросли), а также эукариотические водоросли и высшие зеленые растения. Теперь уже повсеместно признано, что в ходе фо-топроцессов в этих организмах генерируются NADPH (или восстановленный ферредоксин) плюс АТР (гл. И, разд. Г, 2) [77—79]. Однако эта точка зрения далеко не всегда представлялась очевидной. Рассмотрим суммарную реакцию образования глюкозы в ходе фотосинтеза у высших растений  [c.36]

    АМР является только одной из ручек , к которым природа прикрепляет фосфатные группы, образуя ди- и трифосфатные производные. Подобно АМР, другие ручки также являются нуклеотидами, мономерными единицами нуклеиновых кислот. Таким образом, один фермент, нуждающийся в полифосфате как источнике энергии, избирает АТР, а другой — СТР или GTP. Следует добавить, что нуклеотидные ручки несут не только фосфатные группы, а представлены и в других кофер-ментах, например в СоА, NAD+, NADP+ и FAD. К тому же они часто являются переносчиками различных небольших органических молекул. В этом случае последние становятся активными метаболитами, такими, как уридиндифосфатглюкоза (UDP-глюкоза или UDPG), участвующая в метаболизме сахаров (гл. 11, разд. Д, 1,6), и цитидиндифосфатхолин, промежуточное соединение в синтезе фосфолипидов [уравнение (11-26)]. [c.189]

    Полисахариды входят в состав почти всех живых организмов и являются одним нз наиболее крупных классов природных соединений. Они играют роль источников энергии или структурных элементов в живых организмах. В качестве примера структурной роли полисахаридов можно привести целлюлозу (полимер D-глюкозы), являющуюся самым распространенным органическим веществом в природе и опорным материалом у растений, а также хитин (полимер 2-ацетамндо-2-дезокси-0-глюкозы)—основной компонент наружного скелета членистоногих. В качестве одного из основных источников энергии для живых организмов отдельные полисахариды участвуют в главном направлении энергообмена в большинстве клеток. Крахмалы н гликогены (полимеры D-глюкозы) являются аккумуляторами энергии в растениях и животных, соответственно. Полисахариды выполняют и более специфические функции например, они ответственны за групповую специфичность пневмококков. Другие природные макромолекулы, состоящие не только из углеводных остатков и содержащие в своем составе блоки из моносахаридных звеньев, необходимы для нормального развития и функционирования тканей животных. Групповые вещества крови, например, относятся к гликопротеинам, у которых расположение моносахаридных остатков в углеводных субъединицах ответственно за способность всей молекулы определять групповую принадлежность крови. [c.208]

    Конденсация моносахаридов в организмах растений и животных происходит ферментативно, с большей легкостью и достигает больших степеней полимеризации. Так, один из компонентов крахмала — амилопектин достигает степени полимеризации п = 36000. Крахмал образуется в растениях в процессе фотосинтеза и запасается в корнях, клубнях, семенах, стеблях и листьях. В зернах пшеницы и риса до 60—80% крахмала, в картофеле до 20%. В организме животных роль крахмала, как источника энергии, вьшол-няет гликоген, накапливающийся в печени. Крахмал состоит из двух полисахаридов, построенных из остатков глюкозы. [c.648]

    Эта реакция является обратной реакции окисления глюкозы, как источника энергии в клетках растений и животных. Фотосинтез не может проходить самопроизвольно, без наличия хлорофилла (см. рис. 1.1). Хлорофилл (MgXfl) можно назвать фотобиокатализатором, так как он связывает воедино частицы неживой и живой природы и электромагнитное излучение и сам не изменяется в ходе фотохимтеского процесса. [c.735]

    Из более сложных полисахаридов важное значение имеют крахмал и целлюлоза (клетчатка). Оба они построены из молекул глюкозы, соединенных кислородными мостиками. Крахмал является одним из продуктов фотосинтеза и резервным источником энергии для растений. Клубни картофеля содержат = 20 % крахмала, зерна пшеницы, ржи, кукурузы = 70 %, риса = 80 %. Из целлюлозы (от лат. сеПгйа - клетка) построены ткани растений, именно она придает растениям прочность и эластичность. Хлопковая вата, фильтровальная бумага - наиболее чистые формы целлюлозы (до 95 %). [c.427]

    Крахмал содержится в зёрнах, клубнях и корнях растений и представляет собой основное питательное вещество растений и одно из важнейших пищевых веществ для человека и животных. Особенно богаты крахмалом зёрна риса (- 80 %), пшеницы (- 70 %), кукурузы ( 68 %) и клубни картофеля (-- 20 %). Во время прорастания семян крахмал при участии ферментов разлагается и используется как энергетический и строительный материал. В организм человека и животных крахмал попадает с пищей и затем разлагается в желудочно-кишечном тракте при у 1астии ферментов до глюкозы, которая используется как источник энергии и частично превращается в гликоген печени и мышц. [c.98]


Смотреть страницы где упоминается термин Глюкоза как источник энергии: [c.147]    [c.472]    [c.72]    [c.39]    [c.458]    [c.211]    [c.445]    [c.200]    [c.139]    [c.23]    [c.536]   
Биохимия Том 3 (1980) -- [ c.467 , c.468 ]




ПОИСК







© 2025 chem21.info Реклама на сайте