Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия тепловая

    В то же время обратная реакция — расщепление воды на водород и кислород — требует затраты энергии (тепловой или, лучше, электрической). Расщепление молекулы воды не является самопроизвольным в отсутствие энергии расщепление вообще не происходит, и уже начавшаяся реакция тотчас же прекратится, если подачу энергии прервать. [c.110]

    Теплообмен лучеиспусканием является частным видом теплообмена, при котором происходит превращение тепла в излучаемую энергию. Тепловое и световое лучеиспускание является процессом распространения электромагнитных волн, которые распространяются в пространстве со скоростью 300 000 км/сек. Электромагнитные волны, являющиеся носителями тепловой лучистой энергии, отличаются от волн, соответствующих световому излучению, лишь длиной волны. Если говорят, что тепло передается лучеиспусканием от одного тела к другому, то это является упрощенным объяснением явления, которое в действительности весьма сложно. Количество тепла, которое излучает твердое, жидкое или газообразное тело, является лишь частью общей излучаемой энергии. [c.128]


    Конформационные превращения в молекуле алкана определяются соотношением между потенциальным барьером внутреннего вращения (/ ) вокруг углерод — углеродной связи и кинетической энергией теплового движения. Значение энергетического барьера Е< кТ (при комнатной температуре энергии теплового движения молекул — 3,5 кДж/моль) соответствует свободному внутреннему вращению. Если Е кТ, то внутреннего вращения вокруг углерод — углеродной связи не происходит, а имеют место крутильные колебания. Барьер внутреннего вращения в этане составляет 12 кДж/моль [27]. В свободных молекулах изобутана барьер внутреннего вращения групп СН( равен 15 кДж/моль. [c.24]

    Одна из характерных особенностей высоких температур состоит в том, что энергия теплового движения частиц становится в этих условиях соизмеримой с энергией химических связей в молекулах, с более высокой энергией возбуждения электронов и даже с энергией связи электронов в атомах и молекулах. В результате этого происходят процессы диссоциации, в которых многие радикалы и [c.170]

    Газы при высоких температурах. Повышение температуры прежде всего вызывает усиление всех форм теплового движения частиц. При высоких температурах энергия теплового движения частиц становится соизмеримой с энергией химической связи в молекулах, с энергией возбуждения новых электронных уровней и с энергией связи электронов в атомах и в молекулах. Поэтому при высоких температурах в газе образуются возбужденные частицы и продукты диссоциации молекул в виде свободных атомов или валентно ненасыщенных групп (радикалов), которые могут находиться в равновесии с исходными молекулами. Являясь вместе с тем очень реакционно способными, эти частицы могут вступать во взаимодействие между собой или с другими частицами, образуя новые сочетания. То же относится к продуктам ионизации. Наряду с этим при высоких температурах в газах могут содержаться пары веп1еств, практически не испаряющихся при обычных температурах, а также частицы, образующиеся при термическом разложении этих веществ. В результате при высоких температурах в газах содержатся (при равновесном состоянии системы) новые, часто совершенно непривычные виды частиц, отвечающие валентным состояниям элементов, нехарактерным или неизвестным для них при обычных температурах. Эти частицы могут быть или более простыми, чем отвечающие им. частицы при обычных температурах (например, ОН, 510, 50), или, наоборот, более сложными (Сз, Сд, Ыаг, Сев, Мда, Ыа(0Н)С1, ВагОз, М05О15 и др.). [c.117]


    Для ограничения распространения пламени, защиты технологического оборудования, а также для создания безопасных условий при аварийно-спасательных работах используют водяные, паровые и аэродисперсные завесы, защитное действие которых основано на поглощении и рассеянии энергии теплового излучения. Защитное действие воздушно-водяных завес основано на частичном поглощении и рассеивании теплового излучения в полидисперсиом слое воздушно-водяной среды, как схематически представлено на [c.106]

    Источники воспламенения в условиях производства весьма разнообразны как по своему появлению, так и по параметрам. Наиболее вероятными являются открытый огонь и раскаленные продукты горения нагретые до высокой температуры поверхности технологического оборудования тепловое проявление механической и электрической энергии тепловое воздействие химических реакций. Источниками воспламенения могут быть разнообразные технологические нагревательные печи, реакторы огневого действия, регенераторы, в которых выжигают органические вещества из негорючих катализаторов, печи и установки для сжигания н утилизации отходов, факельные устройства для сжигания побочных и попутных газов и др. Основной мерой пожарной защиты от подобных источников воспламенения является исключение возможного контакта с ними горючих паров и газов, образовавшихся при авариях и повреждениях. Поэтому аппараты огневого действия располагают на безопасном от смежных аппаратов удалении или изолируют их, размещая в закрытых сооружениях и помещениях. В случае невозможности выполнения подобной рекомендации предусматривают автоматически действующие системы контроля аварийных ситуаций (газовый анализ среды) и установки блокирования открытых источников воспламенения. [c.83]

    Уравнепие (3.62) отличается от (3.59) и (3.61) слагаемым торое представляет собой сумму ЧоШпов ряда от третьего до пятого или шестого. Учет дополнительных членов разложения равноценен частичному отказу от допущения, согласно которому еог, 4 <СкГ. Здесь энергия ме киониого взанмо,действия уже сравнима по величине с энергией теплового движения ионов, это позволяет отказать- [c.92]

    Лучистая энергия, поглош аемая телом, превращается в тепловую, а та энергия, которая отражается от тела и проходит сквозь него, в свою очередь падает на другие окружающие тела. В результате указанных явлений, сопровождающихся двойным превращением энергий (тепловая — лучистая — тепловая), происходит лучистый теплообмен. [c.53]

    Реакционноспособными являются лишь те частицы, энергия которых выше некоторой величины, ей соответствует порог скорости . Согласно изложенным представлениям энергия активации — это та минималь.ная избыточная (по сравнению со средней) энергия теплового движения некоторых молекул в реакционной смеси, благодаря которой при столкновении молекул возможно химическое взаимодействие. Доля активных молекул в реакционной смеси, обычно очень мала. [c.219]

    Книга известных американских ученых является фундаментальным руководством, в котором изложены процессы переноса количества движения (течение вязкой жидкости), энергии (тепловой поток) и массы (поток смеси реагентов). Книга снабжена большим числом примеров, задач и обширной библиографией. [c.727]

    С термодинамической точки зрения, как указывалось ранее, нефтяные эмульсии принадлежат к неустойчивым системам, которые все время стремятся достигнуть состояния равновесия. Агрегативная устойчивость эмульсий измеряется временем их существования и для разных нефтяных эмульсий колеблется от нескольких секунд до многих лет. Установлено [1, 13, 14, 15], что агрегативная устойчивость эмульсии является кинетическим понятием, так как удельная свободная межфазная энергия системы определяется средней кинетической энергией теплового движения, а не минимумом термодинамического потенциала. [c.18]

    Мерой средней кинетической энергии теплового или броуновского взаимодействия мелких частиц является и =ЖвТ, мерой кинетической энергии взаимодействия крупных частиц (более 5 мк), как мы уже видели, является соотношение [c.87]

    При повышении температуры льда до 0° С, когда происходит плавление его (при атмосферном давлении), в результате теплового движения начинают разрываться водородные связи между молекулами воды. Однако при 0°С и несколько повышенных температурах энергия теплового движения еще недостаточна для разрыва всех водородных связей между молекулами, имевшихся в [c.165]

    Механизм переноса тепла теплопроводностью зависит от агрегатного состояния тела. В жидкостях и твердых телах — диэлектриках — передача тепла осуществляется в результате обмена энергией теплового движения атомов и молекул между соседними частицами. В металлах теплоперенос осуществляется главным образом в результате диффузии свободных электронов. В газах теплопроводность обусловлена как обменом энергией при соударении молекул и атомов, так и их диффузией. [c.149]

    Каждое твердое тело — металл, неметалл, кристалл и даже аморфное тело — может рассматриваться как более илн менее регулярная трехмерная решетка, образованная атомами. Каждый атом удерживается в своем положении упругими силами, которые являются функциями его положения и зависят от характеристик окружающих его атомов. Наиболее существенный вклад во внутреннюю энергию твердого тела вносится энергией тепловых колебаний атомов в решетке. Эти колебания являются трехмерными и могут быть разложены иа три независимых колебания вдоль трех осей координат. [c.189]


    При строгом подходе нужно учитывать все формы энергии тепловую, кинетическую, потенциальную, энергию тяготения, энергию электрического и магнитного полей. [c.21]

    Переход из одного физического состояния системы в другое совершается в некотором диапазоне температур и соответствует определенной равновесной структуре аморфного вещества. Вязкотекучее состояние вещества характеризуется его способностью течь под действием внешних сил, поскольку при этих условиях энергия теплового движения значительно больше энергии межмолекулярного взаимодействия. [c.166]

    Изменение диапазона энергии, который нейтрон проходит при замедлении, зависит от смещения тепловой группы. Изменения температуры, которые непосредственно влияют на распределение нейтронов в тепловой группе, фактически определяют новую энергию тепловой группы (Ят)- Изменение т в свою очередь вызывает изменение таких величин, как возраст и вероятность нейтрону избежать резонансного захвата, которые определяются интегралами, пределы которых зависят от значения Ет,. [c.219]

    Когда энергия связи между молекулами больше энергии теплового движения, образуются ассоциаты и комплексы молекул углеводородов, которые можно принять за наименьшую структурную единицу течения [38]. В работе [39] введено понятие о средней степени ассоциации молекул жидкости, мерой [c.20]

    По характеру молекулярных взаимодействий на границе раздела фаз, согласно классификации П. А. Ребиндера [13], все жидкие двухфазные дисперсные системы, в том числе и нефтяные, делятся на две группы по величине удельной свободной межфазной энергии (от). Эта величина определяется соразмерным значением средней кинетической энергии теплового (броуновского) движения [c.12]

    Энергия водордиых связей между молекулами Н З очень мала — она меньше средней энергии теплового движения молекул при обычных температурах. Поэтому на свопстоах сероводорода образование водородных связей практически не сказывается. [c.71]

    Кейер и Рогинский для доказательства неоднородности поверхности провели опыты, известные под названием дифференциальноизотопного метода [И 1. При адсорбции с первыми порциями сорбируемого газа впускаются меченые (радиоактивные) молекулы сорбата. После достижения сорбционного равновесия сорбат откачивается, причем меченые молекулы десорбируются в последнюю очередь, что доказывает неоднородность поверхности. С другой стороны, Хориути и Тойя [9] показали экспериментально, что вид функций распределения по теплотам адсорбции водорода на никеле и вольфраме меняется с температурой в интервале О—300° С. Это, по мнению авторов, является доказательством против теории неоднородной поверхности, поскольку энергия создания или перераспределения дефектов на поверхности твердого тела значительно больше энергии теплового движения атомов в рассматриваемом интервале температур. Опыты Кейер и Рогинского авторы объясняют статистиковероятностными расчетами, которые дополнены представлением [c.18]

    Известно, что в механических системах устойчивое равновесие соответствует минимуму потенциальной энергии системы. Так, шарик самопроизвольно скатывается из положения а на наююнной поверхности (рис. 69), причем его потенциальная энергия переходит сначала в кинетическую энергию движения шарика как целого, а затем в энергию теплового движения молекул. В положении б шарик находится в равновесии. [c.190]

    С повышением температуры растворимость компонентов масляных фракций в полярных растворителях увеличивается и при критической температуре растворения (КТР) наступает полное растворение их в данном количестве растворителя. При растворении компонентов масляных фракций в избирательных растворителях при температурах как выше, так и ниже КТР, система находится в жидком состоянии, т. е. и в том, и в другом случае энергия межмолекулярного притяжения больше энергии теплового движения молекул. Образование однофазной системы при темле-ратурах выше КТР объясняется тем, что в этих условиях кинетическая энергия молекул достаточна для преодоления различия в энергиях межмолекулярного притяжения однотипных молекул компонентов, входящих в состав масляной фракции, и взаимного притяжения молекул самого растворителя [4]. При температурах ниже КТР т-0пловое движение молекул превышает силы притяжения молекул не всех компонентов масляной фракции, в результате чего система разделяется на две жидкие фазы. Критическая температура растворения зависит от структуры углеводородов и природы растворителя. [c.48]

    И. Ф. Ефремовым [13] развито представление о том, что при желатинировании многих золей и суспензий возникновение пространственной сетки обязано силам притяжения между частицами, действующим при сохранении разделяющего их потенциального барьера. При достаточно высоком потенщ1але поверхности и малой толщине двойных ионных слоев, что соответствует сравнительно большой концентрации электролита в дисперсной системе, на результирующей кривой энергетического взаимодействия появляется яма, отвечающая дальним расстояниям. Если глубина такого минимума велика по сравнению с энергией теплового движения, то частица может зафиксироваться в нем, и наступит коагуляция, называемая в отличие от случая непосредственного контакта поверхностей коагуляцией во вторичном миниму.ме (рис. 1.1). [c.13]

    Энергия теплового взаимодействия вследствие массообмена [c.60]

    Химические методы иереработки обусловливают в ряде производств значительное потребление энергии (тепловой и электрической), что определяет необходимость создания развитого энергетического хозяйства и особые требования к его организации для обеспечения надежной, четкой п бесперебойной его работы, поддержания параметров энергии на необходимом уровне. [c.21]

    Таким образом, благодаря хлорофиллу при действии солнечного света происходит передача растению солнечной энергии и накопление ее в растительном веществе. Сгорацие углеродистых соединений возвращает в виде тепла освобожденную солнечную энергию, которая и используется для приведения в действие машин, превращающих энергию тепловую в лшханическую. [c.22]

    Возвращаясь к критерию (8.19), следует обратить внимание на факторы, которые обеспечивают минимум приведенных затрат по созданию и эксплуатации системы. Прежде всего это подвод энергии внешних источников (тепла или холода) для доведения параметров выходных потоков до предписанных значений. При одновременном синтезе всей технологической схемы эта проблема может и не возникнуть, так как внешними источниками и стоками энергии тепловой системы могут быть другие системы производства (реакторная, разделения и т. д.), т. е. рекуперация энергии будет осуществляться в масштабах всего производства. Если тепловую систему рассматривать отдельно, то необходимы дополнительные затраты на компенсацию несоответствия параметров выходных потоков заданным значениям. При синтезе системы теплообмена желательно, чтобы эти затраты были хотя бы минимальными. Оценка минимально потребляемого количества внешней энергии может быть произведена с помощью диаграмм температура — тепловая нагрузка [16]. Для этого в координатах Г, Q для объединенных холодного и горячего потоков строятся зависимости Т = j Q) ж совмещением последних до разности температур по вертикали, равной А7 т1п (перемещая один график относительно другого по оси абцисс), определяется температурный (соответственно и по тепловой нагрузке) интервал, который не может быть компенсирован в результате взаимодействия этих потоков (рис. 8.3). Это несоответствие параметров потоков должно компенсироваться за счет внешних источников тепла. [c.455]

    Полученная формула определяет чисто конфигурационную энтропию, т. е. учитывает только перемену мест молекул растворителя и звеньев цепи макромолекул. Растворы, отвечающие такому предельному случаю, называются атермическими растворами (при смешении не происходит изменения внутренней энергии — тепловой эффект равен нулю). Чтобы данную теорию можно было применить для реальных растворов полимеров, имеющих небольшие отклонения от строго атер-мических растворов, предложено учитывать изменение внутренней энергии с помощью теории регулярных растворов. В отличие от атермических растворов для регулярных растворов энтропия смешения принимается равной энтропии при идеальном смешении, а неидеальность системы обусловлена только изменением внутренней энергии (межмолекулярным взаимодействием). [c.322]

    Чтобы отчетливее показать большое значение процессов гидратации, можно обратиться к процессу растворения ионного кристалла, например хлористого калия. Мы знаем, что даже простое растирание соли в порошок требует затраты значительного количества энергии. Очевидно, для разделения соли на отдельные ионы необходимо затратить много больше энергии. Для хлористого калия это количество энергии составляет 170 ккал моль. Откуда же при растворении хлористого калия в воде берется такое большое количество энергии для отрыва ионов от кристалла В основном этот процесс осуществляется за счет энергии гидратации ионов. Для хлористого калия эта энергия составляет (см. табл. 37) примерно 81+84 = 165 ккал1моль и, следовательно, действительно покрывает большую часть энергии, необходимой для выделения ионов из кристалла. Остающиеся 170 — 165 = 5 ккал/моль покрываются за счет энергии теплового движения и растворение сопровождается поглощением теплоты из окружающей среды. [c.386]

    Согласно закону сохранения энергии, тепловой эффект не зависит от пути, по которому проходит процесс, а определяется только начальным и конечным состоянием системы. Поскольку в обоих рассмотренных вариантах процесса конечное и начальное состояния одинаковы, то суммарный энергетический эффект первого пути равен тепловому эффекту второго, т. е. теплоте образования Na l из простых веществ. Таким образом, молено записать  [c.153]

    VaHsir) -Ь V2 I2 (г) = НС1 (г), ДЯ = — 22 ккалЫоль, означает, что превращение 0,5 моль газообразного водорода и 0,5 моль газообразного хлора в 1 моль хлористого водорода при 25° С и 1 атм сопровождается выделением 22 ккал тепла . В соответствии с законом сохранения энергии тепловой эффект этого процесса может быть вычислен и так  [c.10]

    Установлено [15], что агрегативная устойчивость эмульсий является кинетическим понятием, так как удельная свободная межфазная энергия системы определяется средней кинетической энергией теплового движения, а не минимумом термодинамического потенциала. Самопроизвольные процессы в таких системах являются необратимыми и устойчивое состояние соответствует полной коалесценции тобуп и расслоению системы на две объемные фазы с минимальной поверхностью раздела. [c.17]

    Джоуль и Томсон в своих первых опытах пользовались вентилем, но затем заменили его пористым дросселем. Дроссельный вентиль применяли Ольшевский [142], Брэдли и Хейл [143] и Дальтон [144]. Джонстон [145] установил, что основным источником ошибок в ранних измерениях являлся термический эф фект кинетической энергии струи . С помощью этого эффекта неупорядоченная энергия теплового движения превращается в упорядоченную кинетическую энергию струи, что приводит к снижению температуры на выходе из вентиля. Джонстон [145] разработал вентиль специальной конструкции для уменьшения этого эффекта и тепловых потерь. Тонкий корпус вентиля был сделан из монеля, клапан — из черного дерева, а седло клапана— из железного дерева. Этот вентиль использовался при измерениях адиабатного дроссель-эффекта водорода и дейтерия при температурах жидкого воздуха и комнатной температуре [146]. Дроссельный вентиль, или диафрагма, использовался также в работах [147—150]. [c.109]

    В зависимости от условий вза-имодействия выделенный (вторичный) электрон может обладать самой различной кинетической энергией от энергии теплового движения частиц при данной температуре до энергии, близкой к энергии воздействовавшей (первичной) частицы. На рис. 193 представлено распределение вторичных электронов по энергии при выделении их действием первичных электронов с энергией 1 Мэе. Эти данные показывают, что большинство выделяющихся электронов обладает энергией, не превышающей 6 эв. В результате одна первичная частица может образовать в среднем примерно от десяти до ста тысяч вторичных электронов. Поэтому химическое взаимодействие в большинстве случаев вызывается действием не непосредственно частицей большой энергии, а действием вторичных электронов (или каких-либо других вторичных частиц). [c.554]

    П. А. Ребиндер [15] считает, что все двухфазные дисперсные системы, включая и высокодисперсные коллоидные системы, можно разделить на две группы по величине удельной свободной межфазной энергии. Эта величина определяется соразмерной величиной средней кинетической энергии теплового (бро>01овского) движения [c.15]

    При 25—40° энергии теплового движения, равной примерно 4 кдж1моль, недостаточно для возбуждения внутримолекулярного движения. Поэтому практически все молекулы при обычных условиях находятся на нулевом колебательном квантовом уровне. [c.69]

    При дальнейшем повышении температуры начинают устанавливаться химические связи, и наступает момент, когда энергия тепло -вого движения становится соизмеримой с энергией взаимодействия высокомолекулярных соединений. В этом случае, несмотря иа наличие межмолекулярного взаимодействия, возможно изменение взаимного расположения отдельных частей (сегментов) сложных молекул. Такое состояние именуется высокоэластичным . При дальнейшем повышении температуры энергия взаимодействия молекул и их частей становится настолько большой, что она начинает значительно превышать энергию теплового движения, длительность установления равновесной конфигурации молекул возрастает, начиная с некоторой температуры структура фиксируется, осуи1еств-ляется переход от равновесной к неравновесной структуре амор( )-ного вещества, т. е. происходит стеклование. Наиболее отчетливо этот процесс прослеживается по изменению концентрации асфальтенов в системе, 1к которых формируются надмолекулярные структуры. В зависимости от растворяющей способности среды концентрация асфальтенов в системе сначала повышается, проходит через максимум и затем падает. [c.166]

    Существует, однако, и другая возможность перераспределения избыточной энергии. Запас энергии, сосредоточенный на молекуле продукта первичной реакции, вместо рассеивания передается одной из реагирующих молекул непосредственио, как говорится, элементарным актом, приводя к ее активированию. Подобные условия гораздо более благоприятны для протекания реакции, чем условия, при которых химическая энергия взаимодействия переходит в энергию теплового хаотического движения. [c.24]


Смотреть страницы где упоминается термин Энергия тепловая: [c.616]    [c.10]    [c.127]    [c.180]    [c.104]    [c.537]    [c.13]    [c.38]    [c.39]    [c.58]   
Общая химия в формулах, определениях, схемах (1996) -- [ c.90 ]

Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.116 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.90 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.90 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.90 ]

Молекулярная биология клетки Том5 (1987) -- [ c.81 ]

Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.202 ]

Техно-химические расчёты Издание 4 (1966) -- [ c.23 ]

Насосы и компрессоры (1974) -- [ c.190 , c.214 ]

Физическая химия Том 2 (1936) -- [ c.93 ]

Насосы и компрессоры (1974) -- [ c.190 , c.214 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.202 ]

Биофизика (1983) -- [ c.9 , c.10 ]

Техника низких температур (1962) -- [ c.166 , c.345 , c.381 , c.383 , c.385 ]




ПОИСК





Смотрите так же термины и статьи:

Диссипация энергии акустического поля за счет теплового скольжения

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И ТЕПЛОВЫЕ ЯВЛЕНИЯ Первый закон термодинамики

Зависимость между средней кинетической энергией теплового движения молекул газа и его аблсолютной температурой

Зависимость между средней кинетической энергией теплового движения молекул газа и его абсолютной температурой

Закон сохранения энергии и тепловые явления

Излучение тепловое расход энергии

Катодные станции, использующие энергию ветра, тепловую или кинетическую энергию транспортируемого по трубопроводу продукта

Клименко, Г. Е. К а н е в е ц, Б. В. Гайдук, Получение энергии при тепловом потреблении газобензиновых заводов

Определение статей затрат тепловая энергия

Определение теплового потока по балансу энергии жидкости

Оптимизация теплового и массообменного КПД в триадных координатах энергия, экология, инвестиции

Переход механической энергии в тепловую

Переход электрической энергии в тепловую

Полимеризация тепловые эффекты и энергия связе

Причина превращения энергии гравитационного поля в тепловую энергию

Расчет теплового эффекта реакции из энергии связей

Сравнение относительной значимости теплового и механического источников энергии при возбуждении колебаний

Тепловая термическая энергия

Тепловая энергия для работы печей

Тепловая энергия при переносе электронов

Тепловое излучение баланс энергии

Тепловое излучение энергия

Тепловые эффекты реакций. Термохимические закономерности как форма передачи энергии

Технологический процесс производства электрической энергии на тепловых электростанциях Тепловые схемы электрических станций

Технологическнй процесс производства электрической энергии на тепловых электростанциях Тепловые схемы электрических станций

Топливо, тепловая и электрическая энергия

Электрическая энергия, превращение тепловую

Энергия активации тепловое воспламенение

Энергия квантов тепловая

Энергия связей и тепловые эффекты реакции

Энергия также Свободная, Солнечная, Тепловая энергия

Энергия тепловая, отнимаемая у моря воздухом

Энергия тепловая, перенос

Энергия теплового движения

Энергия теплового движения частиц



© 2025 chem21.info Реклама на сайте