Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Градиентная оптимизация процессов, метод градиента

    Методы направленного поиска позволяют избежать этого недостатка. Рассмотрим градиентный метод для определения экстремума функции 5 (с(жо), Т хо), и,(Хо), с х), Т(х), v,(x), f(r, х), Vi r, х), Р х)) при отсутствии каких-либо ограничений. Процесс оптимизации по методу градиента заключается в определении направления наискорейшего изменения функции и некотором перемещении по этому направлению в прямую или обратную сторону. Направление наискорейшего изменения функции определяется направлением вектор-градиента оптимизируемой функции. Существенной чертой определения наискорейшего изменения является численное вычисление производных функций д /дс ха), д 1дТ хо), d ldv, xa),. .., которое производится следующим способом д 1ду х ) = [ с хо),. .., yi(Xo)+At/i,. .., Ui(Xo), с(х), Т(х), u x), f r, х), Уг г, х), Р х),. . . ) с Хо), У Х ), , UiUo), с, Т, UJ, /, U2, -.. )]/A /j, где Ai/j— приращение по оптимизируемому параметру, шаг изменения у, у, может быть любым из (Xo), Т Хо), vJ Xa),. ... в качестве шага по оси у выбирают [c.361]


    Рассмотрим градиентный метод для простейшего случая определения экстремума функции многих переменных 3(л ь Хг,..., Хп) при отсутствии каких-либо ограничений. Процесс оптимизации по методу градиента заключается в определении направления наискорейшего изменения функции 3 и в некотором перемешенин по этому направлению в прямую или обратную сторону. Направление наискорейшего изменения функции определяется направлением вектор-градиента оптимизируемой функции, которое всегда совпадает с направлением возрастания функции. Компонентами градиента дЗ/дХ° в какой-либо точке рассматриваемой области, заданной параметрами (л °, х°,. ... л °), являются частные производные функции д31дх°, дЗ дх, д31дх°. Отметим, что градиент дЗ/дХ° всегда перпендикулярен к поверхности равных значений функции 3 в рассматриваемой точке. [c.128]

    Оптимизация процесса с помощью факторных планов Бокса очень широко применяется на практике и носит название метода Бокса — Уилсона. Постановка задачи здесь в принципе отличается от предыдущей необходимо кратчайшим путем выйти в район оптимума, причем описание поверхности отклика по дороге к оптимуму вовсе не обязательно. Метод Бокса — Уилсона является по своей природе градиентным методом, основанным на том, что направление кратчайшего пути к оптимуму — линии наиболее крутого спуска или подъема — совпадает с направлением градиента к исследуемой поверхности. [c.443]


Методы кибернетики в химии и химической технологии (1971) -- [ c.155 , c.156 ]

Методы кибернетики в химии и химической технологии (1971) -- [ c.155 , c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Градиентная оптимизация процессо

Градиентная оптимизация процессо градиента

Градиентная оптимизация процессо методом

Градиентная оптимизация процессов градиента

Метод градиентов

Метод оптимизации

Метод оптимизации процессов

Методы градиентные

Оптимизация процессов

Оптимизация процессов оптимизация



© 2025 chem21.info Реклама на сайте