Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карно недостижимости абсолютного нуля

    Принцип недостижимости абсолютного нуля. Важнейшим следствием третьего начала термодинамики является недостижимость абсолютного нуля. Принцип недостижимости абсолютного нуля был сформулирован Нернстом в 1912 г. Попытаемся воспроизвести ход рассуждений Нернста. Проведем цикл Карно в интервале между, скажем, комнатной и более низкой температурой. При этих условиях можно получить некоторое количество работы, но так как для нашей цели необходимо отбирать теплоту от источника теплоты с более низкой температурой, то цикл непригоден для производства работы. Однако если мы можем достигнуть абсолютного нуля и использовать его как наинизшую температуру цикла, то тогда согласно второму началу источник теплоты с этой температурой совсем не получит теплоты. Мы имеем, таким образом, систему, которая получает теплоту при более высокой температуре и превращает все количество теплоты в работу. Но тогда подобная машина окажется вечным двигателем второго рода. Чтобы избежать этого следствия, Нернст постулировал невозможность достижения абсолютного нуля. Нернст полагал, что доказал эту теорему на основании исчезновения теплоемкостей при абсолютном нуле и второго начала. [c.189]


    Являясь следствием второго закона термодинамики, формула для КПД цикла Карно, естественно, отражает его содержание. Теплоту горячего источника можно было бы полностью превратить в работу, т. е. получить КПД цикла, равный единице, лишь в случае, когда Г] или Т2 0. Оба значения температур недостижимы (недостижимость абсолютного нуля температур следует из третьего начала термодинамики). [c.154]

    Из свойств цикла Карно вытекает ряд следствий. К следствиям относятся невозможность существования вечного двигателя второго рода и недостижимость абсолютного нуля. [c.44]

    Постоянство энтропии при абсолютном нуле означает, что изотермный процесс вблизи абсолютного нуля является в то же время адиабатным. Так как все процессы с теплообменом сопровождаются изменением энтропии то, следовательно, вблизи абсолютного нуля система не обменивается теплотой. Поэтому третий закон часто формулируется, как принцип недостижимости абсолютного нуля, а иногда как принцип невозможности вечного двигателя третьего рода, т. е. невозможности создания машины, с помощью которой можно было бы охладить тело до абсолютного нуля. В связи с недостижимостью абсолютного нуля, используя выражение для к. п. д. цикла Карно (58), можно подчеркнуть, что к. п. д. тепловых машин всегда меньше единицы. [c.185]

    Одним из интересных теоретических следствий теоремы Нернста является принцип недостижимости абсолютного нуля. Для понимания рассуждений, ведущих к этому выводу, рассмотрим цикл Карно, причем допустим, что температура холодильника равна абсолютному нулю. Суммируем все изменения энтропии по отдельным процессам, из которых слагается цикл. Первый процесс — изотермическое расширение — соответствует изменению энтропии, равному QllTl, второй и четвертый процессы адиабатические, и поэтому изменение энтропии в них равно нулю. Третий процесс цикла есть процесс, протекающий при абсолютном нуле (при температуре газа, бесконечно мало отличающейся от нуля), и по теореме Нернста в нем также изменение энтропии равно нулю. В итоге получаем, что все члены суммы 4 5 + Д 5 + Ад5 + 4 5, кроме первого (А15== = равны нулю. Но и сама сумма равна нулю, так как мы [c.159]


Понятия и основы термодинамики (1970) -- [ c.405 ]




ПОИСК





Смотрите так же термины и статьи:

Абсолютный нуль

Карно



© 2025 chem21.info Реклама на сайте