Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пигментная система, перенос энерги

    Мембранные системы в хлоропласте состоят из ряда уплощенных мешков, которые наслаиваются друг на друга в виде стопок, образуя так называемую грану (рис. 8.8). Электроны могут направленно переноситься с одной стороны мембраны на другую так, что кислород выделяется внутри, а процесс восстановления происходит снаружи. Число молекул хлорофилла в каждом хлоропласте прямо зависит от величины поверхности мембран и составляет приблизительно 10 хлорофилльных молекул на хлоропласт. По-видимому, молекулы пигментов (преимущественно хлорофилла) должны распределяться в виде монослоев по поверхности мембран, создавая максимальную площадь поверхности пигмента для поглощения света и переноса энергии к особым участкам мембраны. Эксперименты с импульсным освещением показали, что скорость выделения кислорода у растений возрастает с ростом интенсивности света до определенного предела, соответствующего возбуждению одной из каждых 300 молекул пигмента. Однако этот результат не означает, что другие пигментные молекулы всегда неактивны, потому что квантовые выходы, измеренные при низких [c.232]


    Перенос энергии в пигментных системах [c.73]

    Те примитивные системы, которые использовали пигментные сенсибилизаторы, имели дополнительные способы более эффективной утилизации органических соединений [81. Примером может служить прямое фотосинтетическое фосфорилирование. Современные организмы используют различные фосфорилирован-ные соединения, в частности аденозинтрифосфат (АТФ), для запасания и переноса необходимой энергии в форме химических связей. Исходя из принципа биохимического подобия, мы приходим к заключению, что появление фосфор ил ирующего механизма, возможно с участием фотосинтетического процесса, было необходимым этапом развития. [c.271]

    Данные, подтверждающие концепцию о существовании двух различных фотосистем, еще не позволяют оценить относительный вклад каждой фотореакции в общий процесс. Одно из слабых мест в схеме переноса электронов, представленной на фиг. 219,— допущение равного участия обеих фотосистем по одному фотону на эквивалент. Тогда возникает вопрос, как поглощенные кванты распределяются между двумя фотореакциями, так чтобы обеспечить образование первичных фотопродуктов в нужном соотношении Были выдвинуты две гипотезы. Согласно первой из них — так называемой гипотезе раздельной упаковки ( separate pa kage ), существуют две полностью раздельные фотосистемы, причем каждая из них имеет свой собственный набор пигментов. Передача энергии может происходить между пигментами данной системы, но не от одной системы к другой. По этой гипотезе выход может быть максимальным (т. е. усиление отсутствует) именно при тех длинах волн, при которых поглощение каждой пигментной системы и выходы отдельных фотореакций равны. Тогда анализ спектров действия, приведенных на фиг. 226 и 227, наводит на мысль, что вспомогательные пигменты, которые сенсибилизируют фотосинтез очень эффективно, почти поровну разделены между двумя системами (с фотосистемой II связано несколько больше пигмента). Обе системы содержат также одну или более форм хлорофилла а. У зеленых растений эти системы содержат примерно равное количество хлорофилла а, за исключением длинноволнового компонента, который сенсибилизирует только систему I. У сине-зеленых и красных водорослей система I содержит значительно больше хлорофилла а, чем система II. Такое несоответствие приводит к тому, что не все фотопродукты системы I находят партнеров по реакции из системы II, и, следовательно, общая эффективность в той области, в которой в основном поглощает хлорофилл, будет низкой. [c.570]

    Не исключено также, что рассмотренная выше 2-схе-ма не исчерпывает сложных взаимоотношений между пигментными системами и переносчиками электронов, возникающих в ходе работы реальной фотосинтетической машины. В последние годы получены экспериментальные доказательства энергетических взаимодействий между соседними фотосинтетическими единицами выявляется миграция энергии между субъединицами обеих систем. Все больше аргументируются и представления о том, что существует несколько путей (электронных каскадов) от воды к фотосистеме I. Электроны могут переноситься от фотосистемы И к фотосистеме I не по одной, а по нескольким параллельным цепочкам переносчиков. В то же время фотосистема I, по-видимому, способна питаться электронами, поступающими от нескольких (например, четырех) фотосистем II. Эффективный контроль скорости транспорта электронов осуществляется также с помощью специальных электронных емкостей . Как показали исследования А. Б. Рубина, из общего, представленного в хлоропластах, пластохинона в реакциях транспорта участвует только около 10—20%, а остальные 80—90% используются тогда, когда в этом возникает острая необходимость. Благодаря такому резерву восстановленного пластохинона в цепи транспорта электронов постоянно поддерживается стабильное редокс-состояние переносчи- [c.99]


    Однако ие исключено, что правильнее было бы считать хлорофилл, находящийся в агрегированном состоянии в пигментной системе, сверхмолекулой, в которой возбуждение но существу делокали зовано. В процессе переноса энергии к реакционному центру по всей последовательности молекул проходит волна снятия возбуждения. [c.74]


Смотреть страницы где упоминается термин Пигментная система, перенос энерги: [c.208]    [c.64]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.73 ]




ПОИСК







© 2025 chem21.info Реклама на сайте