Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронного транспорта цепи

    В процессах тканевого дыхания наиболее важную роль играют цитохромы h, С , с, а и (Я,. Цитохром представляет собой терминальный участок дыхательной цепи — цитохромоксидазу, которая осуществляет окисление цитохрома с и образование воды. Элементарный акт представляет собой двухэлектронное восстановление одного атома кислорода, т.е. каждая молекула кислорода одновременно взаимодействует с двумя электрон-транспортными цепями. При транспорте каждой пары электронов во внутримитохондриальном пространстве может накапливаться до б протонов (рис. 9.8). [c.310]


    В течение длительного времени считали, что АТФ и другие высокоэнергетические соединения, находящиеся в равновесии с ним, представляют собой единственную форму энергии, которая может использоваться живыми клетками во всех энергозависимых процессах. Вопрос о характере связи между транспортом электронов, с одной стороны, и превращением фосфорных соединений, с другой, долгое время оставался неясным. Было установлено, что использование энергетических ресурсов (органических или неорганических соединений при дыхании, света при фотосинтезе) связано с переносом электронов по цепи, состоящей из белковых и небелковых компонентов, способных к обратимому окислению — восстановлению. В результате этого переноса освобождающаяся на отдельных участках дыхательной или фотосинтетической цепи энергия трансформируется в химическую энергию фосфатных связей АТФ. Молекулярный механизм фосфорилирования, сопряженный с электронным транспортом, был неизвестен. [c.100]

    Протонный насос представляет собой значительно более сложную систему по сравнению с ионными насосами, описанными ранее. Его физиологическая функция заключается не в ионном транспорте, а, наоборот, в использовании ионного градиента для синтеза АТР — наиболее важного энергетического источника клетки. Митохондриальная электронная транспортная цепь, сопряженная с дыхательной цепью, генерирует необходимый градиент протонов. Некоторые микроорганизмы в качестве источника энергии вместо дыхания используют свет (см. ниже). [c.179]

    Изучение у прокариот электронтранспортных цепей, функционирующих в процессах дыхания и фотосинтеза I и II типов, выявило принципиальное сходство между ними. В обеих системах электронного транспорта есть флавопротеины, хиноны, цитохромы и белки, содержащие негемовое железо, позволяющие переносить электроны вниз по термодинамической лестнице. Таким образом, по существу обе электронтранспортные цепи являются окислительными. Разнообразие в их организации обнаружено при более детальном изучении и выражается как в широком наборе доноров и акцепторов электронов, так и в конкретной организации самих цепей химическом строении переносчиков, принадлежащих к одному типу, их наборе, расположении и т.д. [c.97]

    Для использования О3 в качестве конечного акцептора электронов в процессах, связанных с получением метаболической энергии, представлялось наименее сложным превратить фотосинтетический электронный транспорт в дыхательный. С этой целью надо было добавить дегидрогеназы на низкопотенциальный конец цепи и цитохромоксидазы — на другой, взаимодействующий непосредственно с О3. Все необходимые типы переносчиков и обратимые протонные АТФазы уже были к этому времени сформированы. [c.355]


    Таким образом, дыхательная цепь переноса электронов в митохондриях состоит из большого числа промежуточных переносчиков, осуществляющих электронный транспорт с органических субстратов на О2. Последовательность их расположения, представленная на рис. 94, подтверждается различного рода данными значениями окислительно-восстановительных потенциалов переносчиков, ингибиторным анализом. [c.364]

    Важная роль кофермента Ою в процессе электронного транспорта вытекает из того, что он находится в точке разветвления цепи переноса электронов. Как видно из рис. 23-2, Корю передает кислороду электроны от двух [c.312]

    Изменение свободной энергии при окислении 1 молекулы глюкозы молекулярным кислородом (ДСо = -2870 кДж/моль) того же порядка, что и окисление этого же субстрата в анаэробных условиях нитратом, восстанавливающимся до нитрита (А0о= = -1770 кДж/моль) или молекулярного азота (А Со = -2700 кДж/моль). Таким образом, энергетические возможности процесса окисления глюкозы с участием нитрата сопоставимы с энергетическими возможностями процесса аэробного дыхания. Запасание клеткой полезной энергии при денитрификации зависит от организации электронного транспорта, свойств и локализации соответствующих редуктаз. Электронтранспортные цепи денитрификаторов в анаэробных условиях содержат все основные типы связанных с мембранами переносчиков флавопротеины, хиноны (убихинон, менахинон или нафтохинон), цитохромы типа Ь, с. Цитохромоксидазы в этих условиях не синтезируются. [c.406]

    Некоторые из этих компонентов переносят электроны, другие переносят водород. Взаиморасположение переносчиков в мембране таково, что при транспорте электронов от субстрата к кислороду протоны (Н ) связываются на внутренней стороне мембраны, а освобождаются на внешней. Можно представить себе, что электроны в мембране проходят зигзагообразный путь и при этом переносят протоны изнутри наружу. Эта система, транспортирующая электроны и протоны, получила название дыхательной или электрон-транспортной цепи. Иногда ее образно называют протонным насосом , так как главная функция этой системы— перекачивание протонов. [c.235]

    Электроны от окисляемых субстратов поступают в дыхательную цепь и далее через систему переносчиков передаются на О2, служащий обязательным конечным акцептором электронов. Электронный транспорт приводит к генерированию АДн+- [c.401]

    Все доступные к настоящему времени экспериментальные данные свидетельствуют в пользу близкого сходства структуры центров, связывающих восстановительные субстраты в этих двух ферментах. Вероятно, различия между ними сводятся к небольшим различиям в лигандном окружении атома молибдена. Как и в случае ксантиноксидазы, для установления структуры альдегидоксидазы потребуется выяснение природы этих лигандов и относительного пространственного расположения компонентов электрон-транспорт-ной цепи. [c.287]

Рис. 7.8-13. Схематическое изображение цепи электронного транспорта фотосинтеза (ЭТФ). На входе — НгО и свет, на выходе—NADP и Ог. Белки ЭТФ представлены с помощью сокращенных названий или в виде темных кружков. Рис. 7.8-13. <a href="/info/376711">Схематическое изображение</a> цепи электронного транспорта фотосинтеза (ЭТФ). На входе — НгО и свет, на выходе—NADP и Ог. Белки ЭТФ представлены с помощью <a href="/info/573866">сокращенных названий</a> или в виде темных кружков.
    Один из центральных вопросов современной биохимии заключаете в том, каким образом поток электронов по цепи переносчиков приэодц к образованию АТР. Вопрос этот очень важен, так как большая часть АТР, образующегося в аэробных и некоторых анаэробных организмах, генерируется именно в процессе окислительного фосфорилирования. Более того, энергия, улавливаемая в процессе фотосинтеза, идет на образование АТР с помощью очень сходного процесса. Механизм генерирования АТР может быть тесно связан с функционированием мембран при транспорте ионов. Вполне возможно, что механизм окислительного фосфорилирования в известном смысле является обратным механизму использования энергии АТР для мышечного сокращения. [c.391]

    Со сформированными электронтранспортными цепями, локализованными в мембране, содержащими все типы переносчиков и имеющими прямое отнощение к получению клеткой энергии, мы уже встречаемся у рассмотренных в гл. 13 и 14 анаэробных эубактерий с наиболее просто организованной энергетикой хе-мотрофного (брожение) и фототрофного (бескислородный фотосинтез) типа некоторых пропионовокислых бактерий, всех фотосинтезирующих пурпурных и зеленых бактерий. В клеточных мембранах этих организмов локализованы и функционируют сопряженные с электронным транспортом АТФ-синтазы. [c.348]

    У цианобактерий и прохлорофит в результате двух фотохимических реакций электроны поднимаются до уровня приблизительно -500 мВ, что делает возможным их прямой перенос на молекулы ферредоксина и НАДФ (рис. 75, В). В группах эубактерий, осуществляющих кислородный фотосинтез, фотоиндуци-руются два потока электронов циклический и нециклический. Циклический перенос электронов, связанный с активностью фотосистемы I, приводит к получению только энергии. При нециклическом электронном транспорте, обеспечиваемом активностью двух последовательно функционирующих фотохимических реакций, на конечном этапе электронного переноса образуется восстановитель, а на отрезке электронтранепортной цепи между двумя фотосистемами, где электроны переносятся по электрохимическому градиенту, имеет место запасание энергии в молекулах АТФ. [c.284]


    Биологическое окисление и транспорт электронов по цепи дыхания тесно связаны с окислительным фосфорилированием, являющимся главным источником накопления свободной энергии в клетках в легко испадьзуемой форме — в виде богатых энергией фосфорных соединений, главным образом в АТФ. В окислительном цикле трикарбоновых кислот на каждую молекулу уксусной кислоты, окисленной до двуокиси углерода, образуется 8 протонов и 8 электронов, которые транспортируются по цепи дыхания и восстанавливают молекулярный кислород в воду. Отщепление атомов водорода происходит на следующих этапах цикла трикарбоновых кислот  [c.561]

    На основе теории релаксационных конформационных переходов Блюменфельд в последние годы провел экспериментальные исследования синтеза АТФ в биологических мембранах — как в митохондриях, так и в тилакоидах (см. гл. 14). Показано, что АТФ синтезируется из АДФ и фосфата при скачкообразном повышении pH среды от 5 до 9. Это можно трактовать не как результат создания трансмембранного градиента pH, а как следствие возникновения неравновесных состояний АТФ-азы и других белков в цепях электронного транспорта н/или целой тила-копдной мембраны благодаря диссоциации определенных кислот- [c.440]

    Циклическим электронным транспортом у фотосинтезирующих эубактерий не исчерпываются все возможные пути переноса электронов. Электрон, оторванный от первичного донора реакционного центра, может по цепи, состоящей из других переносчиков, не возвращаться к молекуле хлорофилла, а передаваться на такие клеточные метаболиты, как НАД(Ф)" или окисленный ферредоксин, которые используются в реакциях, требующих восстановителя. Таким образом, электрон, покинувший молекулу хлорофилла, выводится из системы . Возникает однонаправленный незамкнутый электронный поток, получивший название нециклического пути переноса электронов. У пурпурных и зеленых нитчатых бактерий функционирует только циклический светозависимый поток электронов. У остальных групп эубактерий фото-индуцируется как циклический, так и нециклический перенос электронов, при этом у зеленых серобактерий и гелиобактерий оба пути электронного транспорта связаны с функционированием одной фотосистемы, а у цианобактерий и прохлорофит циклический перенос электронов зависит от активности фотосистемы I, а для нециклического потока электронов необходимо функционирование обеих фотосистем. Поток электронов по цепи переносчиков на определенных этапах сопряжен с направленным перемещением протонов через мембрану, что приводит к созданию протонного градиента, используемого для синтеза АТФ. [c.281]

    Отсутствие у пурпурных и зеленых нитчатых бактерий светозависимого восстановления НАД или ферредоксина связано с тем, что электроны, отрывающиеся от молекулы хлорофилла, в результате фотохимической реакции акцептируются на хиноновых соединениях, окислительно-восстановительный потенциал которых недостаточно отрицателен для непосредственного восстановления НАД или ферредоксина (см. табл. 11). В этих группах фотосинтезирующих эубактерий восстановитель образуется в результате темнового переноса электронов от экзогенных доноров (сульфид, тиосульфат, органические соединения) против электрохимического градиента — обратного переноса электронов (рис. 75, А). Последний осуществляется с участием электронтранепортной цепи, в состав которой входят флавопротеины, за счет энергии, генерируемой в процессе циклического электронного транспорта. [c.284]

    Электрон от акцептора фотосистемы II проходит через цепь переносчиков и поступает в реакционный центр фотосистемы I, на фотоокисленную форму хлорофилла а — пигмент Пуоо ( о=+500 мВ), заполняя электронную вакансию аналогично тому, как это происходит при фотосинтезе зеленых серобактерий. Перенос электронов от акцептора электронов фотосистемы II до реакционного центра фотосистемы I — темновой процесс, состоящий из серии этапов, в которых участвуют переносчики с понижающимися восстановительными потенциалами, такие как цитохромы разного типа, пластоцианин (медьсодержащий белок), пластохинон. Электронный транспорт на этом участке на определенных этапах сопровождается ориентированным поперек мембраны переносом протонов и, следовательно, генерированием Дрн+> разрядка которого с помощью протонной АТФ-синтазы приводит к синтезу АТФ. [c.288]

    Фотосистема I цианобактерий и прохлорофит (как и эубактерий, имеющих только одну фотосистему) фотоиндуцирует также циклический перенос электронов (рис. 75, В), обеспечивающий клетку энергией. В циклическом потоке электроны, акцептированные Ре5-белком, через цепь переносчиков вновь возвращаются к месту своего старта и заполняют электронную вакансию в молекуле П700. Циклический электронный транспорт сопровождается генерированием протонного градиента и синтезом АТФ. [c.289]

    Свойство предельной окисленности молекулы СО2 используется в энергетическом метаболизме ряда анаэробных эубактерий, получающих энергию в процессе брожения, где СО2 служит для удаления избытка восстановителя, т.е. как конечный акцептор электронов. Эта же особенность молекулы СО2 находит применение и в энергетическом метаболизме некоторых анаэробных эубактерий (ацетогены) и архебактерий (метаногены), но у них электроны на СО2 поступают через цепь связанных с мембраной переносчиков электронного транспорта. СО2, участвующая в реакциях энергетического метаболизма, не включается в вещества клетки, а продукты ее восстановления (в виде молекул формиата, ацетата, метана) накапливаются в среде. В наибольшей степени способность вовлекать СО в метаболизм среди первично анаэробных хемогете-ротрофных эубактерий проявляется в фуппе клостридиев. [c.291]

    Таким образом, в слоевых системах тилакоидов имеются сложные пигментно-липидно-белковые комплексы с различными рассмотренными выше простетическимн группами только оптимальная пространственная организация этих комплексов делает возможным столь быстрый и эффективный транспорт электронов по цепи переносчиков, который наблюдается в фотосинтезе. Однако та же пространственная организация, вероятно, предопределяет и участие тех или иных компонент в нескольких редокс-системах, и возникновение новых, многокомпонентных редокс-систем, которое стимулируется условиями внешней среды живого организма, в частности действием мутагенов, ингибиторов и других агентов. Например, пластохинон А — первый акцептор электрона от Хл реакционных центров фотосистемы П — является еще и кофактором циклического переноса электрона с участием только системы I. Имеются данные о том, что цитохром / — важное звено в цепи транспорта электрона от фотосистемы И к фотосистеме I — принимает участие и в циклическом транспорте электрона. [c.33]

    Для перехода к использованию энергии света необходимо было создание фоторецепторных молекул и подключение части из них к имеющимся электронтранспортным цепям. Такие фоторецепторы — М -порфирины — были сформированы. Фотосинтез начался, видимо, с создания системы фотоиндуцированного циклического электронного транспорта и служил сначала в качестве [c.354]

    Участие в дыхательном электронном транспорте принимают белки, содержащие железосероцентры (см. рис. 58). Они входят в состав некоторых флавопротеинов, например сукцинат и НАД(Ф) Нз-дегидрогеназ, или же служат в качестве единственных простетических групп белков. Дыхательные цепи содержат больщое число Ре8-центров. В митохондриальной электронтранс-портной цепи функционирует, вероятно, около дюжины таких белков. В зависимости от строения Ре8-центры могут осуществлять одновременный перенос 1 или 2 электронов, что связано с изменением валентности атомов железа. [c.362]

    Образование восстановителя происходит в результате энергозависимого обратного переноса электронов. Ахтивность участка дыхательной цепи, обеспечивающей обратный электронный транспорт, на порядок ниже активности короткого участка, функционирование которого приводит к получению энергии. В целом для фиксации 1 молекулы СО2 в восстановительном пентозофосфатном цикле необходимо окислить больше 22 молекул Fe " . Таким образом, из всех представителей эубактерий, у которых обнаружена способность к окислению железа и/или марганца, только облигатно ацидофильные формы могут использовать энергию окисления Fe " для ассимиляции СО2, т. е. существовать хемолитоавтотрофно. Именно они являются истинными железобактериями, соответствуя тому названию, которое было введено С. Н. Виноградским. [c.380]

    Различия в потенциалах между смежными переносчиками электрона не должны быть слишком малы, так как при этом цепь электронного транспорта передает окислительный потенциал к субстрату. Однако, как указывалось ранее, скорость процесса переноса электрона должна увеличиваться с уменьшением различий в энергиях между двумя соседними состояниями. Оба эти условия в значительной степени осуществляются, по-види-мому, в биологических окислительно-восстановительных цепях, где разность потенциалов между соседними цепями порядка 100 мв и й7 /е 27 мв при 37°. [c.101]

    Вернемся теперь к синтезу АТР. Подавляющая часть молекул АТР (около 85 %) в животных бактериальных и растительных клетках синтезируются в мембранных внутриклеточных структурах (мембранное фосфорилирование). В аэробных организмах непосредственными источниками энергии (энергодонорные процессы) являются определенные стадии окисления пищи. В растениях и фотосинтезирующих бактериях первичными источниками явшяются, конечно, кванты света, энергия которых, после возбуждения хлорофилла, превращается в энергию в окислительно-восстановительных цепях электронного транспорта (ЦЭТ) в тилакоидных мембранах хлоропластов. [c.90]

    Так, например, перестройки митохондриальных мембран исследованы с помощью бирадикального зонда AXVIII(2) [182]. Как видно из рис. IV.15, спектр ЭПР этого зонда, включенного в мембрану предварительно истощенных по субстратам дыхания электронно-транспортпых частиц митохондрий, имеет форму, доста-таточно типичную для нежесткого бирадикала (см. рис. 11.30). При добавлении в эту систему эндогенного субстрата дыхания — сукцината спектр ЭПР меняется, приобретая форму, обычную для быстровращающегося монорадикала (см. рис. II.6). Подобное изменение спектра в принципе могло быть просто следствием деградации используемого зонда на монорадикалы в процессе работы цепи электронного транспорта. Однако в действительности этого не происходит, так как, например, после экстракции радикала из образца его спектр снова имеет форму исходного квинтета Таким образом, наблюдаемое изменение спектра действительно свидетельствует об изменении физических характеристик самой мембраны. [c.179]

    Многие жизненно важные природные соединения содержат фрагменты из четырех связанных вместе пиррольных колец, которые иногда могут быть в восстановленной форме. Такие тетрапиррольные фрагменты встречаются в переносящих кислород белках (например, в гемоглобине), в цитохромах (белках, отвечающих за транспорт. электрона в цепи дыхания), в хлорофиллах и бактериохлорофиллах (молекулах, непосредственно участвующих в процессах фотосинтеза в растениях и фотосинтезирующих бактериях), в витамине В12 (витамине, препятствующем возникновению злокачественного малокровия), в-пигментах желчи и в некоторых токсинах морских организмов. На рис. 13.1 в качестве примеров приведены некоторые важные природные тетрапиррольные соединения, а также пример фталоцианина. Фталоцианины не являются природными тетра-пиррольными соединениями они синтезируются в большом масштабе и используются как красители. [c.285]

    Многие бактерии, однако, и в анаэробных условиях используют окислительное (электрон-транспортное) фосфорилирование при этом происходит перенос электронов, получаемых при расщеплении субстрата, по (укороченной) электрон-транспортной цепи на экзогенные (добавленные в питательную среду) или эндогенные (образующиеся при разложении субстрата) акцепторы. Акцепторами электронов могут быть ионы нитрата, сульфата, карбоната и фумарата, а также сера соответствующие виды бактерий объединяют в физиологические группы нитратвос-станавливающих, денитрифицирующих, сульфатредуцирующих, метаногенных и ацетогенных бактерий, а также бактерий, восстанавливающих серу. Все эти бактерии играют важную роль в природном балансе. Так как фосфорилирование, сопряженное с транспортом электронов, долгое время считалось характерной принадлежностью аэробного дыхания, то, говоря о преобразовании энергии при окислительном фосфорилирова-нии в анаэробных условиях, в настоящее время пользуются также термином анаэробное дыхание (см. гл. 9). [c.248]

    У бактериохлорофилла Pggo меньший окислительный потенциал (E = + 0,2 в) по сравнению с Pggo (реакционным центром в системе циклического электронного транспорта). В соответствии с этим Z имеет больший восстановительный потенциал (E = — 0,6 в), по сравнению с Z. Последнее разрешает участие в электронтранспортной цепи ферредоксина (EO = = —0,43 в). От ферредоксина электроны с помощью растворимой ферредоксин-НАД-редуктазы (представляющей собой флавопротеид) переносятся на НАД с образованием восстановленной формы (НАДНа), которая и используется в дальнейшем в процессах клеточного метаболизма (фиг. 78). [c.164]

    Основным принципиальным отличием нециклической электронтранспортной цепи у этих растений считается последовательное участие в переносе электронов двух фотохимических центров или, как принято называть в последнее время, двух фотосистем. Каждая фотосистема включает в себя не только фотохимический реакционный центр, но и совокупность определенных обслуживающих его оксидоредуктаз. Фотосистема 1 имеет тот же реакционный центр Р700, что и система циклического электронного транспорта, а фотосистема 2 включает хлорофилл а, имеющий красный максимум поглощения в более коротковолновой области [c.165]

    На схеме, изображенной на фиг. 75, отражены места в цепи электронного транспорта искусственных акцепторов А] (например, хинонов, бензилвиологена, флавин- [c.168]


Смотреть страницы где упоминается термин Электронного транспорта цепи: [c.214]    [c.87]    [c.358]    [c.441]    [c.178]    [c.181]    [c.50]    [c.88]    [c.353]    [c.365]    [c.367]    [c.401]    [c.26]    [c.390]    [c.169]   
Принципы структурной организации белков (1982) -- [ c.222 ]

Принципы структурной организации белков (1982) -- [ c.222 ]




ПОИСК







© 2025 chem21.info Реклама на сайте