Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сигналы управляющие импульсны

    Датчик усилия содержит в корпусе три упругих элемента с наклеенными на них тензорезисторами и электронную микропроцессорную схему. Устанавливаемая между траверсами подвески конструкция датчика усилия является оптимальной для стационарных систем [2]. Мостовая схема включения тензорезисторов позволяет уменьшить погрешность, обусловленную температурной зависимостью сопротивления тензорезисторов. Упругие элементы располагаются в вершинах равностороннего треугольника так, чтобы компенсировать неравномерность нагрузки при перекосах в установке датчика усилия между траверсами. Микропроцессор управляет измерением усилия, осуществляет математическую обработку данных и в варианте исполнения с цифровым выходом обеспечивает вывод информации в формате интерфейса RS-485. В других вариантах исполнения выходной сигнал может быть широтно-импульсным или токовым 4...20 мА. Также имеется вариант исполнения, где присутствуют все три выходных сигнала цифровой, токовый и широтно-импульсный. [c.54]


    На рис. 72 приведена обобщенная структурная схема универсального вихретокового прибора, автоматизированного на основе микроЭВМ. Блок генераторов I содержит программно-управляемый по частоте и амплитуде генератор синусоидального (или импульсного) тока, возбуждающего электромагнитное поле в объекте с помощью блока ВТП 2. Программно-управляемый компенсатор 3 служит для установки точки компенсации на комплексной плоскости сигналов. Усилитель 4 с программно-изменяемым коэффициентом передачи усиливает сигналы ВТП до требуемого для работы синхронных (фазовых) детекторов 5 и б уровня. Опорные напряжения синхронных детекторов, сдвинутые на п/2 одно относительно другого, формируются формирователем 7. С помощью программы возможно изменение фазы опорных напряжений. С выходов синхронных детекторов напряжения, пропорциональные мнимой и действительной составляющим сигнала ВТП, поступают через мультиплексор 8, коммутирующий поочередно входные каналы, на вход аналого-цифрового преобразователя (АЦП) 9. Цифровая информация с выхода АЦП поступает в микроЭВМ ]0, где обрабатывается по заданным программам и выдается на внешние устройства (ВУ) (дисплеи, перфораторы, цифропечатающие устройства и Т.Д.) для отображения. Возможен обмен информацией между микроЭВМ и верхней ступенью АСУ ТП. МикроЭВМ управляет работой генератора, компенсатора, усилителя, формирователя опорных напряжений, мультиплексора, АЦП и ВУ. Требуемые для установки режимов работы прибора данные, определяющие частоту и амплитуду тока возбуждения, коэффициент передачи усилителя, программу работы ВУ и т.д., вводят с пульта [c.413]

    Сигнал от фотоэлектрического датчика уровня 3, подвешенного на ферме отстойника, поступает на измерительный блок 13 и далее на двухпозиционный импульсный регулятор 12. Регулятор 12 через блокиратор 11 управляет исполнительным механизмом шибера 5. Регулятор 12 может давать сигнал только на открытие шибера. После снижения уровня ила управление вновь передается системе регулирования концентрации ила. [c.186]

    В системе импульсного управления (рис. 5-2) в качестве импуль-сатора используется электронный прибор типа РПИБ-П1-И завода МЗТА (Московский завод тепловой автоматики). Имиульсатор получает сигнал по расходу ВОДы непосредственно от дифференциального манометра или через размножитель импульсов, если пропорционально одному расходу дозируется несколько реагентов. Предусматривается также возможность работы импульсатора по сигналу от ручного задатчика со щита. Импульсатор управляет включением электродвигателя дозатора через магнитный пускатель типа ПМИ или П-6, рассчитанный на большое количество включений. Для защиты электродвигателей от перегрева устанавливают двухфазные тепловые реле (типа РТ-1) или автоматические выключатели (типа АП-50). Для защиты электродвигателя насоса-дозатора в цепь его питания включается также электроконтактный манометр, устанавливаемый на напорной линии насоса-дозатора до первого запорного клапана по ходу воды. [c.263]


    Структурная схема виброаппаратуры с Фурье-преобразованием приведена на рис. 3. Сигнал с вибродатчика 1 через интегратор 2 поступает на фильтр нижних частот 3, выход которого подключен к двум функциональным делителям 4, состоящих из точных резисторов, инверторов и ключей. Ключи управляются сигналами с распределителя импульсов 16, соединенного с умножителем частоты / 7, к входу которого подключен импульсный датчик 18. Коэффициенты передачи функциональных делителей изменяются по псевдосинусоидаль-ному и псевдокосинусоидальному законам, в спектре которых, кроме оборотной частоты, присутствуют высшие гармоники. [c.610]

    Импульсным регулятором называется устройство, преобразующее входную величину (регулируемый параметр) в выходной сигнал в виде импульсов, амплитуда, длительность или частота повторения которых зависят от текущего значения параметра. Эти импульсы непосредственно или через накопительное устройство управляют приводом регулирующего органа. В простейшем импульсном регуляторе при изменениях входного сигнала меняется только знак импульсов. По-8иционный регулятор превращается в простейший импульсный, если в цепь управления исполнительным механизмом включить прерывающее устройство. Такая мера необходима при регулировании объектов, обладающих заметным запаздыванием, [c.40]

    Импульсный релаксометр ЭПР представляет собой комбинацию обычного супергетеродинного спектрометра и систем формирования насыщающих импульсов и импульсной коммутации приемника. Блок-схема релаксометра представлена на рис. 4.20. Насыщающий импульс формируется в основном канале сигнального клистрона с помощью диодного коммутатора. Управляющий импульс подается на диоды от стандартного генератора типа Г5-7А. Контрольный уровень мощности СВЧ поступает на рабочий резонатор через обводной канал. Аттз позволяет регулировать уровень контрольной мощности, а Аттх — мощность насыщающего импульса. В спектрометре используется модуляционная схема АПЧ сигнального генератора по ссбственной частоте рабочего резонатора [44]. Для стабилизации промежуточной частоты также применяется модуляционная схема. В этой схеме частота гетеродинного клистрона модулируется с частотой 2 Мгц, что приводит к соответствующей модуляции промежуточной частоты, которая преобразуется в амплитудную модуляцию при отстройке промежуточной частоты от максимума частотной характеристики УПЧ. Возникающий таким образом сигнал ошибки управляет частотой гетеродинного клистрона. Модуляционные частоты сигнального и гетеродинного клистронов выбраны достаточно высокими, чтобы сигналы ошибки были вне полосы пропускания видеоусилителя приемника релаксометра. [c.156]

    Принцип работы схемы состоит в следующем сигнал постоянного тока подается на входное устройство, состоящее из модулятора входного трансформатора и схемы установки нуля. Преобразованный сигнал, имеющий прямоугольную форму с коммутационными импульсами — помехи на переднем и заднем фронте, усиливается с сохранением формы импульсным усилителем и подается на временной селектор. Временной селектор уничтожает коммутационные импульсы, помехи и формирует полезный сигнал в полуволны синусоидального напряжения. Дальнейшее усиление осуществляется узкополосным усилителем мощности, настроенным на частоту 1 кГц и приближающим форму сигнала к синусоидальной. Затем напряжение сигнала выпрямляется сихронным демодулятором, который управляется генератором. [c.84]

    Для управления передатчиком используется импульсный модулятор. В него входят очень стабильный (кварцевый) генератор ВЧ, работающий в режиме непрерывной генерации, и ВЧ-переключатель, который включается при подаче импульса от импульсного программатора и выключен все остальное время. Сигнал ВЧ, прошедший через переключатель, попадает на схему, создающую ВЧ-напряжения, отличающиеся по фазе от напряжения задающего ВЧ-ге-нератора на О, 90, 180 и 270° . Эти напряжения нужны для модифицированных экспериментов Карра —Перселла, описанных в гл. 2, и для некоторых других многоимпульсных экспериментов, описанных в гл. 5 и 6. Если предполагается использовать фазовое детектирование, то в импульсном модуляторе вырабатывается также опорный сигнал. В этом случае чрезвычайно важно, чтобы полностью отсутствовала утечка ВЧ-сигнала из генератора в помещение лаборатории и в катушку образца. При наличии такой утечки из импульсного модулятора в катушку образца фазовое детектирование сигнала приобретает нежелательный характер. Поскольку мы не можем управлять ни амплитудой, ни фазой этого паразитного опорного сигнала, возникает множество экспериментальных трудностей. Импульсы ВЧ, вырабатываемые в импульсном модуляторе, далее усиливаются в передатчике, который связан с датчиком и образцом. Передатчик построен таким образом, что вы- [c.68]


Смотреть страницы где упоминается термин Сигналы управляющие импульсны: [c.119]    [c.63]    [c.149]   
Теория и проектирование гидро- и пневмоприводов (1991) -- [ c.333 , c.357 ]




ПОИСК





Смотрите так же термины и статьи:

Сигнал



© 2025 chem21.info Реклама на сайте