Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Импульсный ток

Рис. 9.10. Вольт-амперные зависимости импульсного тока (а) и параметры вольтамперограмм (б) I- высота и 2 - полуширина пика Рис. 9.10. <a href="/info/18793">Вольт-амперные</a> зависимости <a href="/info/769137">импульсного тока</a> (а) и параметры вольтамперограмм (б) I- высота и 2 - полуширина пика

    Электролиз ведут из растворов, подкисленных серной (35—100 г/л) или хлорной кислотой [98 ] и содержащих сульфат аммония или натрия (40—70 г/л). Эти добавки, по-видимому, препятствуют окислению поверхности катода либо способствуют растворению окислов с катода и тем самым облегчают восстановление рения 1 115]. В качестве катода используют тантал или нержавеющую сталь, в качестве анода — платину. Рений при электролизе получается в виде порошка (насыпная масса 8 г/см ) или чешуек. Электролитный рений, полученный даже из растворов перрената калия, по чистоте не уступает рению, полученному восстановлением перрената аммония. Крупнокристаллическая структура электролитного рения мешает его переработке на компактный металл металлокерамическим способом. Более мелкий порошок (98% < 56 мкм) можно получить при электролизе с применением тока переменной полярности (импульсный ток), а также на установке с вращающимся барабанным катодом [89, с. 101] но и такие порошки не годятся для металлокерамики. Порошок рения,полученный электролитическим путем, применяется для приготовления сплавов и других целей. [c.314]

    Оценим величину импульсных токов и напряжений, индуктированных в газопроводе разрядами молнии, при отсутствии и наличии изолирующих фланцев и сгонов, которые делят газопровод на отдельные электрически изолированные друг от друга участки импульсных токов. [c.103]

    Одна часть монохроматического излучения элемента от лампы с полым катодом проходит через пламя 5 и фокусируется на входной щели 7 монохроматора. Другая часть светового потока минует пламя и затем совмещается с первой с помощью тонкой. пластинки 6. Выделенное монохроматическое излучение попадает на фотоумножитель или фотоэлемент 10. Ток усиливается в блоке 11 и регистрируется измерительным прибором 12. Раствор поступает в пламя через горелку (атомизатор) 4. Важнейшей проблемой в атомной адсорбции является отделение резонансного излучения элемента в пламени при данной длине волны от аналитического сигнала. Для этого падающее на поглощающий слой и контрольное (не проходящее через пламя) излучение модулируют или с помощью вращающегося диска 2 с отверстиями, или путем питания лампы с полым катодом переменным или импульсным током. Усилитель 11 имеет максимальный коэффициент усиления для той же частоты, с которой модулируется излучение полого катода. Лампы с полым катодом обычно одноэлементны и чтобы определить другой элемент, нужно сменить лампу, что увеличивает время анализа. Многоэлементные лампы, которые используют в атомно-абсорбционных многоканальных спектрофотометрах, позволяют одновременно определять несколько элементов. Атомно-абсорбционный метод может быть полностью автоматизирован, начиная от подачи проб до обработки результатов измерений. При этом производительность метода составляет до сотен определений в 1 ч. [c.50]


    Контакты изготовляются из материала УК и служат в качестве скользящего контакта в цепях импульсного тока высокого напряги [c.146]

    В усовершенствованном методе (с приставкой Фурье) проводится быстрое сканирование в пределах всего интересующего диапазона частот (20 кГц до 10 МГц при В = 1-2 Тл) за 1 мс. Это заставляет все ионы в заданном диапазоне массовых чисел циркулировать в фазе, т.е. поглощать энергию, когда их циклотронная частота совпадает с радиочастотой. Как результат такого поглощения энергии при резонансах на верхней и нижней пластинах ячейки индуцируется импульсный ток, который можно регистрировать, предварительно усилив его электронным усилителем. Величины сигналов обусловлены количеством ионов данной конкретной массы, находящихся в ячейке, циклотронная частота которых совпадает с радиочастотным электрическим полем. Полученные в результате сигналы в измеряемом промежутке представляют собой совокупность импульсов от ионов всех анализируемых масс и, следовательно, содержат всю информацию об образце, которую дает МС рассматриваемого типа. С помощью специального преобразования можно перейти от полученной временной зависимости величин импульсов за определенный отрезок времени к зависимости их ох частоты, которая непосредственно связана с массами ионов. В результате такого преобразования получается традиционный масс-спектр анализируемых ионов. Сама процедура перехода к масс-спектрам называется преобразованием Фурье. В МС-ПФ достигнуто рекордное для масс-спектрометрии разрешение 250000-280000 и более [22], Как следз ет из соотношения (7.13), в МС-ПФ не надо калиброваться по массам с помощью стандартов, т.к. этот метод дает точное значение масс анализируемых ионов. [c.858]

    Нестационарный режим электролиза. К нестационарному режиму электролиза относятся реверсирование тока, различные формы периодического тока, импульсный ток. [c.252]

    Разрядник Номинальное напряжение, 9ф Пробивное напряжение, в Максимальное остаточное напряжение (в) на разряднике при амплитуде импульсного тока, а  [c.193]

    В режиме намагничивания импульсным током на управляющие электроды тиристоров Т1 и Т4 подаются одиночные управляющие импульсы. При этом тиристоры Т1 и Т4 отпираются, происходит разряд накопительного конденсатора С1 через тиристор Т1 и половину первичной обмотки импульсного трансформатора [c.419]

    В этом было бы легко убедиться, будь у вас осциллограф на его экране в начале опыта светилась бы синусоида, а в конце нижняя ее ветвь исчезла бы в цепи течет так называемый импульсный ток. Осциллограф помог бы сразу установить, где положительный полюс выпрямителя, а где отрицательный (это очень важно, если вы собираетесь ставить с самодельным выпрямителем электрохимические опыты). Но можно обойтись и без приборов полярность выпрямителя легко установить, пользуясь полоской фильтровальной бумаги, смоченной слабым раствором поваренной соли с добавкой индикатора фенолфталеина. < [c.113]

    Регистрируемый импульсный фарадеевский ток на СРКЭ практически идентичен току на РКЭ и даже более точно описывается выражением (9.56). Остаточная (после вычитания результатов двух выборок) постояннотоковая составляющая фарадеевского тока имеет форму полярографической волны. Однако, если постояннотоковая составляющая на РКЭ перед началом и во время действия поляризующего импульса растет по закону то на СРКЭ за это время она уменьшается по закону По этой причине после вычитания выбранных значений тока на СРКЭ остаточный фарадеевский ток имеет противоположное направление по отношению к импульсному току и в несколько раз больше, чем на РКЭ, хотя существенно меньше импульсной составляющей. В целом вольт-амперная зависимость фарадеевского тока на СРКЭ в дифференциальной импульсной полярографии почти идентична таковой на РКЭ. Однако емкостная помеха в этом случае заметно меньше. [c.357]

    Рис, 4. Тарировочный график (зависимость температуры поверхности проволоки от величины пропускаемого через нее импульсного тока) —температуры кипения изооктана, а-метилнафталина и дибутилфталата X—температуры плавления олова, свинца, цинка II серебряного припоя. [c.195]

    График зависимости температуры поверхности проволоки от величины пропускаемого через проволоку импульсного тока строили по значениям величин тока, полученным обоими способами. Как видно из этого графика (рис. 4), в диапазоне температур от 100 до 620 °С была получена линейная зависимость между силой тока п температурой. [c.195]

    Повышение скорости электроосаждения было достигнуто в гидридном электролите при использовании импульсного тока большой плотности—10—20 А/дм . Применение импульсного тока в неводных электролитах сопряжено с определенными трудностями, связанными с пониженной электропроводностью раствора [76]. Импульсным методом изучена кинетика быстрых электродных реакций в различных группах эфирных электролитах алюминирования [74]. Свойства покрытий, полученных на импульсном токе, существенно не изменяются. Покрытия получаются матовыми, крупнокристаллическими. [c.25]

    Вихретоковый вид неразрушающего контроля основан на анализе взаимодействия электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых в контролируемом объекте. Его применяют только для контроля изделий из электропроводящих материалов. Вихревые токи возбуждают в объекте с помощью преобразователя в виде катушки индуктивности, питаемой переменным или импульсным током. Приемным преобразователем (измерителем) служит та же или другая катушка. Возбуждающую и приемную катушки располагают либо с одной стороны, либо по разные стороны от контролируемого объекта (метод прохождения). [c.13]


    Длительность пропускания тока при намагничивании дпя контроля на остаточной намагниченности составляет от нескольких миллисекунд до 0,5. .. 1 с. При контроле способом приложенного поля ток пропускают либо непрерывно в течение всего процесса намагничивания, нанесения суспензии и осмотра, либо по программе ток - пауза . При этом длительность тока составляет 0,1. .. 3 с, а паузы -1. .. 5 с, т.е. ток является прерывистым. По стандарту DIN 54130 такой прерывистый ток называют импульсным, а импульсный ток (одиночные импульсы) -ударным. [c.286]

    Импульсный ток - одиночные импульсы малой длительности, например полученные с применением дефектоскопов МПД-70, МД-50П, МД-87П и др. Импульсный ток эффективен для контроля способом остаточной намагниченности с применением кабелей, электроконтактов и других устройств, имеющих относительно небольшие индуктивные сопротивления. [c.292]

    Импульсный ток применяют для обследования небольших з астков крупно- [c.292]

    При намагничивании импульсным током 1 = (10. .. 20)1, Ь расстояние между электроконтактами, мм [c.297]

    Размагничивание с применением этой схемы получается качественным, если деталь при контроле была намагничена полем импульсного тока. Схема использована в дефектоскопах ПМД-70, МД-87, МД-50П и др. [c.322]

    Длительность импульсного тока, полупериод. .. 3. .. 4 Длительность процесса автоматического размагничивания в передвижном соленоиде в ЮУ, с. .. 15. .. 20 Погрешность измерения [c.425]

    Длительность импульсного тока, [c.433]

    Максимальный импульсный ток через электроконтакты, А 1500 Частота следования импульсов, Гц............................. 2 [c.448]

    Как видно из табл. 8.2, большое число сварных соединений авиационных конструкций проверяют с помощью электроконтактов и кабелей. Для намагничивания и размагничивания используют в основном импульсный ток дефектоскопов ПМД-70, МД-50П, ПМД-87, МД-87П. Контроль проводят способом остаточной намагниченности, так как авиационные конструкционные стали имеют большие значения коэрцитивной силы и остаточной индукции, что обеспечивает высокую эффективность контроля. [c.517]

Рис. 8.72. График определения силы тока в зависимости от расстояния между точками установки электроконтактов при намагничивании полем импульсного тока дефектоскопов МПД-87, МД-50П Рис. 8.72. График <a href="/info/836570">определения силы тока</a> в зависимости от <a href="/info/24920">расстояния между</a> <a href="/info/835384">точками установки</a> электроконтактов при <a href="/info/1390673">намагничивании полем</a> <a href="/info/769137">импульсного тока</a> дефектоскопов МПД-87, МД-50П
    Методы и средства намагничивания и размагничивания деталей. Для намагничивания деталей применяют постоянный (вьшрямлен-ный), переменный, однополупериодный и импульсные токи, а также постоянные магниты. [c.158]

    Циркулярное намагничивание осуществляется при пропускании тока по контролируемой детали или через проводник (стержень), помещенный в отверстие детали. При циркулярном намагничивании направление магнитного потока перпендикулярно направлению тока, поэтому оптюиально обнаруживаются дефекты, направление которых совпадает с направлением тока. Одной из разновидностей циркулярного намагничивания является намагничивание путем индуцирования тока в контролируемой детали. Устройства для такого намагничивания представляют собой трансформатор, вторичной обмоткой которого (или частью сердечника) служит контролируемая деталь. На рисунке 3.4.1 представлено устройство намагничивающее УНМ-300/2000, предназначенное для намагничивания изделий постоянным током величиной до 300 А и импульсным током величиной до 2000 А (разработчик МНПО "Спектр"). [c.159]

    Широкое распространение получили переносные и передвижные (менее мощные) дефектоскопы. Как правило, они представляют собой источники переменного, постоянного (однополупериодного вьлпрямленного) и реже - импульсного тока. Иногда один дефектоскоп позволяет работать с двумя видами тока. Передвижные и переносные универсальные дефектоскопы предназначены для намагничивания и контроля деталей в условиях, когда невозможно применять стационарные дефектоскопы, например, при намагничивании крупногабаритной детали по частям, в случае работ в полевых условиях и т.п. [c.161]

    Наибольшую опасность для подземных трубопроводов представляют прямь[е удары молнии в землю или в окружающие предметы (деревья) вблизи подземного трубопровода, а также разряды молнии вдоль трубопровода. В первом случае вдоль корневой системы деревьев или непосредственно по земле возможен пробой грунта между местом удара молнии и телом трубопровода. По каналу пробоя может протекать импульсный ток в десятки килоампер [1]. Во втором случае тело трубопровода оказывается в мощном электромагнитном поле, образованном током молнии. Электромагнитное поле по закону электромагнитной индукции Фарадея наводит в трубопроводе ЭДС индукции. Индуктированные (наведенные) ЭДС могут превышать импульсную прочность изоляции. Пробой изоляции с образованием искровых разрядов может быть опасен во взрывоопасной среде, на подходах к компрессорным или насосным станциям и хранилищам. Поэтому необходимо ограничивать распространяющиеся по трубопроводам импульсные токи и ЭДС до безопасных значений. [c.103]

    Хромирование с применением импульсного тока повышает выход хрома по току до 19 21 %. позволяет зиачителыю интенсифицировать процесс хромирования и вестн электролиз при 60 С с / =200- -250 А/дм°, а при 70 С с /к- 350 А/дм Этот режим обеспечивает высокую износостойкость покрываемых изделии, хотя блеск осадков уменьшается [231 [c.117]

    В приводимом ниже примере при пробном наложении тока было установлено, что потенциал расположенного рядом газопровода высокого давления тоже снижается. Это свидетельствует о наличии контакта. На рис. 11.9 представлена схема системы трубопроводов и показаны значения измеренных токов в трубопроводе. Станция регулирования расхода газа может быть успешно использована для подсоединения измерительных кабелей. Поскольку к домовым газовым вводам тоже можно подключить измерительные кабели, участки излмерения тока в трубопроводах газораспределительной сети получаются сравнительно короткими. Измерение тока вдоль трубопровода (см. раздел 3.4.2) хорошо поддается контролю при наложении импульсного тока. Величина и полярность этого тока тоже показаны на рис. 11.9. Можно легко установить, что в районе домов № 22—24 по улице I через разыскиваемый контакт протекал ток 40 А. Соприкосновение произошло с домовым вводом газа в дом № 13. [c.262]

    Разрабатываются способы катодной защиты кузовов транспортной техники (автомобилей). Протекп орные аноды используют для защиты отд. декоративных элементов кузова, при этом электронные устройства обеспечивают постоянный или импульсный ток аноды, наклеиваемые на кузов, изготавливают из электропроводящего полимера (напр., фафитопла-ста, углепластика) или нержавеющей стали. Для увеличения зоны действия защиты необходимо размещать аноды в наиб, коррозионноопасных точках или использовать электропроводящую окраску. [c.459]

    Импульсную составляющую тока - основную для данного варианта вольтамперометрии, как и в варианте нормальной импульсной полярографии, можно найти из уравнения (8.91), за исключением того, что теперь АШ4(/н) = где = пд(Е - Е у П -безразмерный потенциал постояннотоковой развертки, который при ее ступенчатом характере изменяется согласно зависимости Е = Ео - (М- 1)-5 (Ы- порядковый номер импульса) = - А А = пдАЕН - безразмерные амплитуды импульса. Полученное таким образом выражение для импульсного тока / идентично (9.44), а после упрощений - и (9.45), если в этих выражениях заменить 1 - на Й1 п - При этом ток, выбранный в конце действия импульса, также описывается выражением, аналогичным выражению (9.46)  [c.350]

    В лаборатории плазму обычно создают в электрическом поле, (Степень ионизации, которая может быть достигнута при термическом нагреве газа, недостаточно высока, хотя и можно получить высокоионизованную плазму низкой плотности и температуры при поверхностной ионизации). Взаимодействие приложенного электрического поля и газа, которое прн определенных условиях приводит к газовому разряду, в общем весьма сложно. Однако в отсутствие магнитного поля газовый разряд достаточно понятен и свойства плазмы могут быть рассчитаны. Более трудно получить надежную информацию о роли нейтральных частиц. Очевидно, что уровень работы в области плазменного разделения нзотопов прямо соответствует уровню понимания свойств плазмы. Разделение изотопов получено в газовых разрядах постоянного, переменного и импульсного токов. Разделение в нейтральном газе с использованием плазмы в качестве вспомогательной среды представляется более сложным подходом к решению задачи. Но поскольку нейтральные частицы всегда присутствуют в газовом разряде, подобные процессы могут происходить и в установках, рассчитанных на полностью ионизованную плазму. К настоящему времени большинство экспериментов выполнено на инертных газах. Исследовалась также урановая плазма была получена плазма высокой плотности в сильноточной дуге (урановую плазму низкой плотности можно получить путем поверхностной ионизации). [c.277]

    Как будет показано ниже, излучение источника света должно быть промодулировано для того, чтобы можно было отделить измеряемый сигнал абсорбции от собственного излучения атомизатора. Для этого применяют питание ламп импульсным током, что дополнительно дает возможность повысрггь яркость излучения спектральных линий. [c.828]

    В однолучевом спектрофотометре свет от источника резонансного излучения, питаемого импульсным током, пропускают через пламя, в которое впрыскивается межодисперсный аэрозоль раствора пробы. В пламени частички аэрозоля испаряются и диссоциируют, образуя свободные атомы, способные поглощать свет на резонансных длинах волн. В результате атомного поглощения начальная интенсивность светового пучка /о снижается до некоторой величины I, зависящей от концентрации данного элемента в пробе. Монохроматор выделяет узкую область спектра (доли нанометра), в которую попадает нужная аналитическая линия. Приемник света (обычно — фотоэлектронный умножитель) превращает световой поток в электрический сигнал, который после [c.828]


Библиография для Импульсный ток: [c.200]   
Смотреть страницы где упоминается термин Импульсный ток: [c.176]    [c.176]    [c.193]    [c.351]    [c.354]    [c.168]    [c.169]    [c.149]    [c.244]    [c.292]    [c.424]    [c.515]   
Смотреть главы в:

Неразрушающий контроль Т4 -> Импульсный ток




ПОИСК







© 2025 chem21.info Реклама на сайте