Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Усилители импульсный

Рис. 4-3. Принципиальная схема (упрощенная) фильтра-усилителя импульсного полярографа Баркера. Рис. 4-3. <a href="/info/24285">Принципиальная схема</a> (упрощенная) фильтра-<a href="/info/19643">усилителя импульсного</a> полярографа Баркера.

    После перевода пробы в специальный сосуд начинается титрование. В процессе титрования, проводимого вручную, кран бюретки оставляют открытым вплоть до достижения точки эквивалентности, определяемой, например, по изменению окраски индикатора. Вблизи точки эквивалентности титрант добавляют медленнее. Потенциометрическое титрование ведут иначе в этом случае титрант добавляют порциями и часто через определенные промежутки времени и затем оценивают зависимость Д /ДК от объема добавляемого титранта (V ). В серийных анализах, при приблизительно известном значе-иии точки эквивалентности, титрование ведут, приливая раствор титранта сразу в количестве, почти соответствующем точке эквивалентности, что значительно сокращает длительность анализа. Этот факт следует учесть при внедрении техники в процесс титрования. Механизацию указанных процессов и операций, проводимых вручную, можно осуществлять различным образом. При помощи специального устройства можно регулировать подачу раствора титранта из бюретки в простейшем случае устройство состоит из рН-индикатора (например, стеклянного индикаторного электрода), усилителя и реле. При этом появляется возможность от управления процессом (наблюдения за стрелкой прибора и работы с бюреткой вблизи точки эквивалентности) перейти к его регулированию. Для регулирования подачи титранта из бюретки применяют электромагнитные стеклянные клапаны. Запорное устройство может представлять собой также эластичный шланг, закрепленный на носике бюретки, с электромагнитным зажимом в виде клина. Расход титранта замеряют, применяя фотоэлектрическую следящую систему измерения уровня раствора. Приборы такого типа дороги и часто недостаточно надежны в условиях производства. Для дозирования титранта применяют также поршневые бюретки. Поршень, передвигаясь, выдавливает из калиброванной трубки раствор титранта. По перемещению поршня судят о расходе титранта. Поршень приводится в действие синхронным или шаговым мотором, число оборотов которого легко подсчитывается. Поршневые бюретки бывают разных типов с ручным или автоматическим заполнением (автоматическая установка нуля), с микрометрическим устройством или с цифровым указателем. Наиболее эффективно титрование осуществляют следующим образом. Быстрым передвижением поршня до определенного положения приливают титрант в количестве, почти соответствующем точке эквивалентности последующее титрование вблизи точки эквивалентности осуществляют при импульсной или медленной подаче титранта поршнем. Значительно чаще скорость движения поршня регулируют в зависимости от крутизны кривой потенциометрического титрования или от разницы между полученным значением потенциала и предварительно выбранным, соответствующим точке эквивалентности. [c.429]


    Схема состоит из задающего генератора, предоконечного усилителя, импульсного манипулятора, усилителя мощности и имеет необходимые элементы управления и защиты и комплекс контрольно-измерительных приборов. [c.73]

    Счетчики, используемые в составе УУН, могут иметь различный состав в зависимости от функций, выполняемых системой обработки информации. Например, турбинные счетчики могут использоваться целиком в составе преобразователя расхода, предварительного усилителя и электронного преобразователя (вторичного прибора), или частично в составе преобразователя расхода и предварительного усилителя, или только преобразователя расхода. Поскольку преобразователь расхода и электронные преобразователи имеют соверщенно разные метрологические характеристики, то требуются и разные методы и средства поверки (как правило, они поверяются отдельно друг от друга). При этом преобразователь расхода должен иметь сформированный сигнал, удобный для восприятия и обработки, обычно частотно-импульсный. В дальнейшем под преобразователем расхода будем подразумевать собственно преобразователь и устройство для усиления и формирования выходного сигнала (предусилитель, вторичный прибор, канал формирования сигнала в СОИ). [c.127]

    В усовершенствованном методе (с приставкой Фурье) проводится быстрое сканирование в пределах всего интересующего диапазона частот (20 кГц до 10 МГц при В = 1-2 Тл) за 1 мс. Это заставляет все ионы в заданном диапазоне массовых чисел циркулировать в фазе, т.е. поглощать энергию, когда их циклотронная частота совпадает с радиочастотой. Как результат такого поглощения энергии при резонансах на верхней и нижней пластинах ячейки индуцируется импульсный ток, который можно регистрировать, предварительно усилив его электронным усилителем. Величины сигналов обусловлены количеством ионов данной конкретной массы, находящихся в ячейке, циклотронная частота которых совпадает с радиочастотным электрическим полем. Полученные в результате сигналы в измеряемом промежутке представляют собой совокупность импульсов от ионов всех анализируемых масс и, следовательно, содержат всю информацию об образце, которую дает МС рассматриваемого типа. С помощью специального преобразования можно перейти от полученной временной зависимости величин импульсов за определенный отрезок времени к зависимости их ох частоты, которая непосредственно связана с массами ионов. В результате такого преобразования получается традиционный масс-спектр анализируемых ионов. Сама процедура перехода к масс-спектрам называется преобразованием Фурье. В МС-ПФ достигнуто рекордное для масс-спектрометрии разрешение 250000-280000 и более [22], Как следз ет из соотношения (7.13), в МС-ПФ не надо калиброваться по массам с помощью стандартов, т.к. этот метод дает точное значение масс анализируемых ионов. [c.858]

    Описано несколько струйных ультрамикроскопов с автоматическим фотоэлектрическим счетчиком. Вероятно, наилучшим из них является ультрамикроскоп Дерягина и Власенко (1948, 1957, 1962) (рис. II.4). Кроме того, посредством добавления электронного импульсного усилителя и импульсного высотного анализатора (в качестве обычных сцинтилляционных радиационных счетчиков) можно получить распределение частиц по размеру. Однако данных о применении этого метода к эмульсиям не имеется. [c.105]

    Одна часть монохроматического излучения элемента от лампы с полым катодом проходит через пламя 5 и фокусируется на входной щели 7 монохроматора. Другая часть светового потока минует пламя и затем совмещается с первой с помощью тонкой. пластинки 6. Выделенное монохроматическое излучение попадает на фотоумножитель или фотоэлемент 10. Ток усиливается в блоке 11 и регистрируется измерительным прибором 12. Раствор поступает в пламя через горелку (атомизатор) 4. Важнейшей проблемой в атомной адсорбции является отделение резонансного излучения элемента в пламени при данной длине волны от аналитического сигнала. Для этого падающее на поглощающий слой и контрольное (не проходящее через пламя) излучение модулируют или с помощью вращающегося диска 2 с отверстиями, или путем питания лампы с полым катодом переменным или импульсным током. Усилитель 11 имеет максимальный коэффициент усиления для той же частоты, с которой модулируется излучение полого катода. Лампы с полым катодом обычно одноэлементны и чтобы определить другой элемент, нужно сменить лампу, что увеличивает время анализа. Многоэлементные лампы, которые используют в атомно-абсорбционных многоканальных спектрофотометрах, позволяют одновременно определять несколько элементов. Атомно-абсорбционный метод может быть полностью автоматизирован, начиная от подачи проб до обработки результатов измерений. При этом производительность метода составляет до сотен определений в 1 ч. [c.50]

    Помимо калиброванного аттенюатора импульсные дефектоскопы имеют ряд других регуляторов чувствительности. К ним относят регулятор амплитуды зондирующего импульса, некалиброванный регулятор чувствительности УВЧ, ВРЧ и отсечку. Отсечка (ограничение сигналов снизу) достигается изменением порогового уровня детектора. Благодаря этому отсекают все импульсы, амплитуда которых меньше выбранной величины. Применение отсечки искажает реальное соотношение амплитуд продетектированных сигналов и сужает динамический диапазон усилителя прибора. В связи с этим применяют систему так называемой компенсированной отсечки, которая обеспечивает восстановление амплитуды сигналов, оказавшихся выше уровня отсечки, до первоначальной величины. [c.96]


    Структурная схема импульсного толщиномера (рис. 3.30) включает ряд узлов, назначение и принцип действия которых аналогичны используемым в дефектоскопе (см. п. 2.1.1), а именно генератор зондирующих импульсов 0, преобразователь 9, приемник-усилитель 1. Отметим их некоторые особенности. Ге- [c.240]

    При математическом описании импульсных систем выделяют идеальный импульсный элемент ЯЭ и формирователь Ф. К последнему относится устройство, которое преобразует входной сигнал в виде дельта-функции и импульсный сигнал требуемой формы прямоугольной, треугольной, экспоненциальный. Обычно формируются прямоугольные импульсы. Выход формирователя соединяется с входом цепи непрерывных элементов (усилители, исполнительные устройства, регулируемая машина или аппарат), которые в структурной схеме системы могут быть представлены одним звеном—объектом управления ОУ. На рис. 7.4, а эти элементы изображены штриховыми линиями и расположены внутри одного прямоугольника. Формирователь также является непрерывным [c.207]

    Недостатком импульсного- метода является ограничение диапазона малых толщин, доступных измерению, и рост относительной погрешности при уменьшении контролируемой толщины. Это объясняется наличием мертвой зоны , являющейся следствием не нулевой длительности зондирующего импульса и переходных процессов в усилителе электрического напряжения принятого импульса. [c.51]

    Операционные усилители широко применяются также в качестве компараторов (устройств сравнения) в импульсной и цифровой технике. Функция компаратора заключается в том, что в момент равенства сравниваемых напряжений С/вх1 и С/вх2, подаваемых на два его входа, выходное напряжение, которое может принимать два фиксированных значения (два уровня), должно скачком измениться с одного уровня на другой. Один из этих уровней обычно положительный, а другой - отрицательный. В цифровой технике и в логических устройствах больший по величине уровень считается единицей, а меньший - нулем двоичной системы счисления. [c.42]

    Однако другие детали, особенно электронные лампы, если они используются, иногда нуждаются в замене. Источники ИК-излучения постепенно выходят из строя и также требуют периодической замены. В большинстве инструкций по работе имеются указания на последовательность выявления неисправностей, которой нужно следовать при возникновении неполадок. Порядок поиска отказавшей детали заключается в последовательной изоляции систем (оптической, механической, электронной), затем отдельных блоков (усилителя, пера самописца, сервомотора и т. д.) внутри этих систем и, наконец, неисправной детали. Неправильная работа может быть вызвана импульсными электрическими помехами, распространяющимися либо через воздух, либо через цепь питания. Если окружающая температура относительно не постоянна, то калибровка прибора по длинам волн, вероятно, может смещаться. [c.58]

    В зависимости от физической структуры и технического ц) В). исполнения ключей управления Г тиристорным усилителем будем называть регуляторы полупро-водниковьши, если ключи выполнены на полупроводниковых приборах транзисторах, стабилитронах, тиристорах или маг-ятно-полупроводниковыми, если ключи выполнены на магнитных усилителях, импульсных трансформаторах и т, д. В зависимо- [c.159]

    Теоретические основы импульсной полярографии, описание соответствующей аппаратуры и первых экспериментов в новой области обстоятельно изложены в работе Баркера и Гарднера 1958 г., опубликованной в 1961 г. [1]. Общая характеристика метода и частные сведения приводятся также в других работах сотрудников Британского атомного центра [2—7]. Принципиальная схема импульсного фильтра и усилителя импульсного полярографа, который начал затем серийно выпускаться фирмой Саутери Аналитикл, запатентована Баркером [8]. [c.103]

    Следует отметить, что не01н0вые ламны сейчас используются ие только как сигнальные. Их с успехом применяют в качестве активных элементов во многих устройствах реле времени, усилителях импульсных сигналов, генераторах электрических колебаний, [c.17]

    Количественный у.(1ьтразвуковой контроль МКК проводится при помощи импульсного ультразвукового анализатора ЛСК-1 (или ДСК-1М). принципиальная схема которого приведена на рис. 3.12. Прибор состоит из задающего генератора 1, генератора радиоимпульсов 2, аттенюатора 3, усилителя 4, генератора развертки 5, измерителя интервалов времени 6. осциллографического индикатора 7, излучающего пьезопреобразователя 8А, приемного пьезопреобразователя ВБ. [c.73]

    Из-за малости собираемого заряда важным является снижение шумов. Об охлаждении кристалла детектора и первого каскада предусилителя на полевом транзисторе упоминалось выше. Дополнительной мерой является использование импульсной оптической обратной связи (ИОС), как показано на рпс. 5.18. С помощью этого метода шумы, обычно связанные с резистивной обратной связью в предусилителях, исключаются за счет простого отказа от использования какой-либо обратной связи для отвода из детектора накопленного заряда. Такое состояние не может существовать неопределенно долго, поэтому, когда напряжение иа выходе предусилителя достигнет заданного значения, включается светодиод, вызывающий появление тока утечки п полево.м транзисторе, в результате чего он возвращается в начальное рабочее состояние. При включении цепи оптической обратной связи возникают значительные шумы, поэтому на этот промежуток главный усилитель необходимо запирать. В настоящее время предусилители с оптической импульсной обратной связью применяются большинством фирм-изготовителей, за исключением фирмы ОКТЕС, которая достигает того же эффекта с помощью так называемого метода динамического восстановления заряда , не требующего специального запирания усилителя, [c.215]

    Каждый рентгеновский фотон, попадающий в детектор, вызывает один импульс напряжения. Однако, поскольку на детектор приходят рентгеновские фотоны с различной энергией, нужно измерить амплитуду импульса, которая пропорциональна энергии каждого фотона. Электронная схема, выполняющая эту задачу, состоит из трех частей линейный (импульсный) усилитель, аналого-цифровой преобразователь (АЦП) и память. Для иллюстрации их функций рассмотрим рентгеновский фотон Ре К-Ьз,2, который образует в детекторе 1662 электрона. Предусилитель преобразует этот заряд в напряжение, скажем, 32 мВ. Дальнейшее усиление в линейном усилителе приведет к колоколообразному импульсу амплитудой 3,20 В. Амплитуда импульса измеряется АЦП, приводя к цифровому значению 320. В результате содержимое памяти по адресу (или канала) 320 будет увеличено на единицу. При повторении этого процесса для каждого рентгеновского фотона, попавшего в детектор, в память будет записан спектр. Используют память с числом каналов 1024 (1К) или 2048 (2К) (здесь К — килобайт. — Перев.). Если каждый канал соответствует 20 эВ, это покрывает диапазон энергий от О до 20 или от О до 40кэВ. [c.79]

    Фон электронно-импульсных камер несколько выше воздушных и составляет в среднем 1—3 имп/мин. За счет уменьшения разрешающего времени максимальная а-активность проб равна --1-10 расп/мин. Допустимая мягкая р-активность в пробе (Np22 ) составляет 5-10 расп/мин, а жесткая — 2,5-10 расп/мин. Просчеты при 1000 имп/мин могут быть меньше 0,01%. Камеры (вместе с усилителями, работающими на повышенных частотах) практически устойчивы к механическим вибрациям и шумам. Влияют высокочастотные электрические возмущения (например, от искры). Воспроизводимость эффективности счета может составлять 0,01% в течение длительного времени. [c.145]

    В отличие от кросс-поляризации по Хартманну — Хану при адиабатическом переносе нет необходимости согласовывать амплитуды РЧ-полей, что делает допуски на условия эксперимента менее критичными. Реально же осуществить заданное изменение амплитуд РЧ-поля трудно, особенно при использовании нелинейных усилителей мощности. В таком случае можно применить импульсный вариант адиабатического размагничивания, когда изменяется средняя напряженность РЧ-поля [4.297]. Кроме того, процесс адиабатического размагничивания можно заменить импульсной последовательностью Джинера — Бройкаерта [4.298], хотя и за счет некоторой потери чувствительности. [c.238]

    Несущая частота vo. Колебания высокой частоты vo создаются с помощью генератора. При работе в импульсном режиме генератор включается на короткое. время р, называемое длительностью импульса Р У, а затем выключается на промежуток времени, называемый интервалом между импульсами (рис. 5.18). В момент импульса амплитуда колебаний, равная Я], должна достигать весьма больших значений, поэтому обычно используют усилитель ВЧ-мищносТи. Значение амплитуды импульса Я] является важной характеристикой всего спектрометра. [c.150]

    На боковой грани аналитической камеры установлена дрейфовая труба время-пролетного масс-фильтра. Сигнал ионов, детектируемых вторичным электронным умножителем (ВЭУ), поступает на согласующий усилитель 13, далее на осциллограф 14, импульсный вольтметр-накопитель /5 и самописец 16. Пределы обнаружения некоторых элемешхзв, достигнутые при вакуумной термической атомизации, приведены в табл. 14.49. [c.857]


Смотреть страницы где упоминается термин Усилители импульсный: [c.600]    [c.131]    [c.79]    [c.155]    [c.152]    [c.293]    [c.345]    [c.391]    [c.253]    [c.210]    [c.272]    [c.280]    [c.282]    [c.214]    [c.210]    [c.272]    [c.280]    [c.282]    [c.214]    [c.857]    [c.631]    [c.655]   
Применение электронных приборов и схем в физико-химическом исследовании (1961) -- [ c.303 ]




ПОИСК





Смотрите так же термины и статьи:

Усилитель



© 2025 chem21.info Реклама на сайте