Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медноникелевые сплавы кислорода

    Совершенно не горят в кислороде, а расплавляются в одной точке, так же как и в воздухе, проволоки из меди и медноникелевого сплава (константан). [c.83]

    Влияние концентрации кислорода в морской воде на коррозию медноникелевых сплавов после 1 года экспозиции показано на рис. 107. Из рисунка видно, что скорость коррозии с увеличением концентрации кислорода немного возрастала. [c.278]


    Нержавеющая сталь и монель-металл (медноникелевый сплав) не поражаются большинством химикатов, но их использование ограничивается большим удельным весом и высокой стоимостью. Кроме того, коррозия нержавеющей стали может происходить и при низком содержании кислорода. Алюминиевые сплавы используются широко и успешно, но они могут подвергаться точечной коррозии, особенно в условиях недостаточной очистки. Латунь и медь попользуются для изготовления деталей, особенно в аппаратуре rio опрыскиванию, и редко подвергаются серьезной коррозии, разве только в аммиачных растворах. Однако даже следов растворимых продуктов коррозии, содержащих соединения меди, достаточно, чтобы вызвать серьезную биметаллическую коррозию других Металлов. По мягкой стали и магниевым сплавам имеется мало специальных данных. Детали из мягкой стали и магниевых сплавов покрывают краской. Среди неметаллических конструкционных материалов полиэфирный пластик, армированный стеклянным волокном, обладает перспективной стойкостью к коррозии. [c.242]

    На примере исследования медноникелевых сплавов было показано [159], что водород, кислород и азот увеличивают скорость роста усталостных трещин при постоянном уровне напряжений. В вакууме, азоте и кислороде сплав разрушается транскристаллитно, а в водороде — межкрис-таллитно. Предполагается, что в основе этих механизмов лежит взаимодействие дислокаций с атомами среды Часто в качестве нейтральной среды применяют аргон. Однако чистота аргона, его влажность также существенно влияют на усталость различных материалов. [c.101]

    Коррозионным, электрохимическим и физическим исследованиям сплавов Си — N1 посвящено много работ в связи с изучением природы пассивного состояния металлов [1] и границ химической стойкости твердых растворов [2, 3]. Установлено, что сплавы, содержащие более 60 ат. % меди, теряют свойственную никелю способность пассивироваться и в ряде коррозионных сред ведут себя подобно меди.. Область медноникелевых сплавов, в которых проявляется пассивность, приблизительно совпадает с областью существования свободных электронных вакансий в й-уровнях никеля, взаимодействие которыми, по мнению ряда авторов [1], обусловливает прочную хемосорбционную связь металла с кислородом и тем самым его пассивность. При полном заполнении ( -уровней никеля электронами меди (что происходит при содержании в сплаве более 60 ат. % меди) способность сплава к образованию ковалентных (электронных) связей с кислородом исчезает, металл вступает в ионную связь с кислородом, образуя фазовые окислы, не обладающие защитными свойствами. Скорчеллетти с сотрудниками [3] считают заполнение -уровней никеля не единственной и не главной причиной изменения химической стойкости меднопикелевых сплавов с изменением их состава. Большое значение придается свойствам коррозионной среды, под воздействием которой может изменяться структура и состав поверхностного слоя сплава, определяющего его коррозионное поведение. Этот слой в зависимости от агрессивности среды может в большей или меньшей степени обогащаться более стойким компонентом сплава, с образованием одной или нескольких коррозионных структур, что приводит к смещению границы химической стойкости сплавов. Это предположение подтвердилось при исследовании зависимости работы выхода электрона от состава сплавов до и после воздействия на них коррозионных сред (например, растворов аммиака различной концентрации). [c.114]


    Высокая плотность тока способствует растворению металла и сильному выделению кислорода. В результате загрязнения растворяются и механически удаляются с поверхности. Заключительная короткая катодная обработка восстанавливает образовавшуюся окисную пленку. Этот метод дает хороший результат для никеля, медноникелевых, никельжелезных сплавов и содержащего никель чугуна. Нейзильбер с незначительным содержанием никеля активируется в цианистом растворе (метод Б в табл. 19). [c.370]


Смотреть страницы где упоминается термин Медноникелевые сплавы кислорода: [c.349]   
Морская коррозия (1983) -- [ c.272 , c.278 ]




ПОИСК





Смотрите так же термины и статьи:

Медноникелевые сплавы

Сплавы кислорода



© 2024 chem21.info Реклама на сайте