Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы химическая стойкость

    Металлы и сплавы, коррозионная стойкость которых обусловлена наличием на их поверхности пассивирующей пленки (коррозионностойкие стали, алюминий и его сплавы, медноникелевые сплавы, титан и т. д.), подвержены щелевой коррозии. Степень поражения металлов и сплавов щелевой коррозией не всегда одинакова, она зависит от химического состава сплава (аналогично тому, как при точечной коррозии). [c.445]


    Сплав олово—никель. Покрытие сплавом олово—никель (35 % N1 и 65 % 8п) отличается высокой антикоррозионной стойкостью и получается блестящим непосредственно из ванны. Хорошая химическая стойкость в растворах многих кислот, по- [c.52]

    Прн накаливании смеси бора с углем образуется карбид бора В4С. Это тугоплавкое вещество (темп, плавл. около 2350 °С), обладающее очень высокой твердостью и химической стойкостью. Карбид бора применяется для обработки твердых сплавов его механические свойства сохраняются при высоких температурах. [c.631]

    В соответствии с принципами создания коррозионно-стойких сплавов коррозионная стойкость нержавеющих сталей основана на переходе стали в пассивное состояние, в результате чего происходит торможение анодных процессов и образование в решетке сплава, при определенном его химическом составе, плоскости, обогащенной благородным элементом и осуществляющей стерический эффект зашиты. [c.40]

    Большое значение для коррозионных процессов имеет способность металла образовывать на поверхности прочные оксидные пленки. Так, алюминий окисляется легче железа, но он более стоек к коррозии, так как окисляясь кислородом воздуха, покрывается плотной пленкой оксида. На этом явлении основана пассивация металлов, заключающаяся в обработке их поверхности окислителями, в результате чего на поверхности металла образуется чрезвычайно тонкая и плотная пленка, препятствующая оррозии. Примером может служить пассивация железа концентрированной азотной кислотой, открытая еще М. В. Ломоносовым, или. воронение стали в щелочном растворе нитрата и нитрита натрия. Пассивированием объясняется также химическая стойкость нержавеющих сплавов и металлов, на поверхности которых под действием кислорода воздуха образуется защитный слой оксидов, [c.148]

    Сплавы на основе алюминия. Силумин — сплавы алюминия (85—90%) с кремнием (15—10%). Для силуминов характерны значительная прочность и высокое механическое сопротивление, а также большая, чем у чистого алюминия, химическая стойкость. [c.321]

    Силицированный графит - коррозионно- и эрозионностойкий материал. Его применяют для изготовления упорных и радиальных подшипников и уплотнительных колец для химических агрегатов и различных насосов, перекачивающих агрессивные и эрозионные жидкости. Он широко применяется в качестве защитной арматуры термопар погружения при плавке металлов, а также для изготовления футеровки, стойкой в окислительных средах. Добавка бора (до 15 %) в кремний, который применяется в процессе силицирования, приводит к получению так называемого боросилицированного графита. При этом увеличивается твердость образующегося карбида кремния, повышается термостойкость и химическая стойкость силицированного г фита. Боросилицированный графит применяют для изготовления чехлов для термопар, тиглей, нагревателей, стопоров, стаканов, трубок и других деталей, установок для непрерывного литья металлов и их сплавов импеллеров для перемешивания расплавов футеровки печей, форсунок и газовых горелок форм для разливки металлов упорных и радиальных подшипников, торцевых уплотнений и крыльчаток насосов труб, фитингов фаз и насадок для распыления абразивных химически активных веществ. [c.249]


    Изделия, не связанные с приготовлением или хранением пищи, можно покрывать оловянно-свинцовистыми сплавами химическая стойкость их выше, а стоимость значительно ниже, чем чисто оловянных покрытий. [c.252]

    Тантал обладает еще более высокой химической стойкостью, не корродирует в серной, азотной, фосфорной и кипящей соляной кислотах. Тантал чрезвычайно дорог, поэтому его применяют в исключительных случаях для особо ответственных машин н аппаратов, а также в виде тонкой фольги для обкладки аппаратов. Пределы применения цветных металлов и сплавов в химическом машиностроении приведены в табл. 2. [c.22]

    Химическая стойкость медноникелевых сплавов обычно приближаемся к стойкости никеля при содержании никеля в твердом растворе не менее 50 ат. %. [c.257]

    Таллий используют, подобно индию, в качестве добавки к ряду сплавов для улучшения их механических свойств и, главное, для повышения химической стойкости. [c.339]

    I — коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферно-й, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением н др.  [c.225]

    II — жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 С, работающие в ненагруженном или слабонагруженном состоянии  [c.225]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]

    Широкое применение платиновые металлы и сплавы нашли как коррозионно-стойкие материалы. Добавка 10% иридия к платине повышает ее химическую стойкость и твердость втрое. Такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах, в них выращивают кристаллы для лазерной техники. Эти сплавы применяют также для изготовления хирургических инструментов и эталонов. Малые добавки иридия к титану и хрому резко повышают стойкость их к действию кислот. [c.410]

    Начали использовать в технике и бериллий — в качестве добавок к сплавам, увеличивающих их твердость, механическую и химическую стойкость. Прибавка к меди 0,01—0,02% бериллия увеличивает ее электропроводность. [c.254]

    Рений в сплавах с платиной употребляется для изготовления термопар Р1 — Р1 Ре и для термопар—Ре. Присадки рения к вольфраму увеличивают долговечность нитей накала в осветительных лампах. Из рения делают острия — опоры для компасных стрелок. Обладая высокой температурой плавления и малой испаряемостью, большим электросопротивлением и химической стойкостью, хорошими химическими свойствами, рений имеет при снижении стоимости перспективу широкого применения в электровакуумной технике. [c.343]

    Но пассивация металла может возникать за счет самого процесса коррозии в результате поляризации электрода. Этот процесс, зависящий от многих факторов, изучен в трудах Г. В. Акимова, Н. Д. Томашова и других ученых. Создавая условия поляризации в зависимости от состава сплава и состава коррозионной среды, можно защитить металл от разрушения, изменяя потенциал растворения. Сочетание анодной и катодной поляризации может значительно снизить скорость коррозионных процессов, увеличивая химическую стойкость металла. [c.548]

    В настоящем разделе дается характеристика химической стойкости наиболее распространенных видов конструкционных материалов для ориентировочной оценки возможности использования в различных отраслях техники в приложении 1 приведены справочные данные, содержащие значения скоростей коррозии металлов и сплавов и показатели стойкости неметаллических материалов в некоторых жидких и газообразных средах. [c.6]


    Ниобий и тантал входят в состав жаропрочных и коррозионноустойчивых сплавов. Химическая стойкость ниобия и тантала обусловила их применение в химическом машиноаппаратостроении в качестве заменителя платины. Их также используют как конструкционные материалы в энергетических ядерных реакторах. Ниобий и тантал обладают способностью хорошо поглощать газы и используются в вакуумной технике. [c.137]

    В настоящее время освоены титановые сплавы с присадкой палладия и титаномолибденовые сплавы. Данные сплавы обладают очень высокой коррозионной стойкостью, устойчивы в серной кислоте всех концентраций и в кипящей соляной кислоте. Столь высокая химическая стойкость делает их весьма перспективными в химическом машиностроении. [c.22]

    При легировании коррозионно-неустойчивого металла атомами металла устойчивого, в данной агрессивной среде, при условии, что оба компонента дают твердый раствор, и при отсутствии в сплаве заметной диффузии, полученный сплав приобретает химическую стойкость только при определенных соотношениях компонентов в сплаве. Эти определенные соотношения для таких двухкомпонентных твердых растворов вытекают нз так называемого правила границ устойчивости твердых раст1 оров, сформулированного Тамманом и выражающего зависимость между концентрацией твердого раствора и его коррозионной устойчивостью (так называемое правило п/8). [c.125]

    Области применения скандия ограничены из-за ( го дороговизны. В силу своей высокой теплостойкости, легкости, высокой прочности и химической стойкости скандий является перспективным конструкционным материалом для авиа-и ракетостроения. Металлический скандий используется в электровакуумной технике как хороший геттер (нераспыляющийся поглотитель газов). Металлы подгруппы скандия используются в качестве добавок к отдельным сплавам. [c.500]

    Роль пластмассовых покрытий в современной технике трудно переоценить. Превосходная химическая стойкость, водостойкость, погодоустойчивость, стойкость к изменению температуры и другие свойства полимерных материалов позволяют использовать их для защиты от коррозии и агрессивного воздействия химических сред самого разнообразного химического оборудования, трубопроводов, строительных конструкций. Пластмассовые покрытия позволяют повысить срок службы обычных конструкционных материалов, а это означает, что в ряде случаев нет необходимости применять дорогостоящие нержавеющие стали и сплавы. Хорошие декоративные свойства пластмасс в сочетании с такими свойствами, как устойчивость к воздействию микроорганизмов, низкая газопроницаемость, отсутствие токсичности и т. д. дают возможность использовать пластмассы для создания различных слоистых материалов, успешно применяемых для декоративного оформления и упаковки. Покрытия на различные изделия и рулонные материалы могут быть нанесены разными способами в зависимости от физических свойств полимерного материала, а также от вида покрываемого изделия. Для создания покрытий полимерные материалы могут использоваться в виде расплавов, растворов, порошков, пленок. Одним из наиболее интересных является метод нанесения порошкообразного полимера в псевдоожижениом слое. Покрытия на основе высокомолекулярных эпоксидных смол на металлических деталях самого сложного профиля могут быть получены окунанием предварительно нагретой детали в ванну, в которой находится псевдоожиженная порошкообразная смола и отвердитель. Для нанесения покрытий на наружные и внутренние поверхности крупногабаритных конструкций разработаны различные конструкции многокомпонентных распылителей, с помощью которых можно наносить на поверхность как жидкие композиции, так порошковые и волокнистые наполнители. Несколько лет назад появились сообщения о вакуумном методе нанесения пленочных покрытий. Покрытия в этом случае образуются путем приклеивания под вакуумом полимерной пленки к поверхности изделия [235]. [c.195]

    Успехи в области машиностроения и металлургии, освоившей производство разнообразных сплавов (обладающих химической стойкостью и высокой механической прочностью, устойчивых к износу, к действию высоких температур), а также все расширяющееся применение пластических масс в качестве конструкционных материалов позволили значительно усовершенствовать многие аппараты и машины, используемые в химической промышленности. В частности, были созданы насосы для перекачи-- вания кислот, компрессоры для высоких давлений, высокопроиз- [c.17]

    В производстве печатных плат используют блестящие по-к )ытия сплавами, которые сохраняют способность к пайке без оплавления до 18 месяцев, а также проявляют высокую химическую стойкость в растворах травителей, применяющихся для вытравливания меди с поверхности печатных плат. Электроосаждение блестящих осадков в присутствии композиции органических добавок сложного состава, иеионогенных ПАВ и формальдегида, ингибирующих процесс электроосаждения сплава, протекает при плотности тока в 2—3 раза большей обычной. Среди известных блескообразующих добавок наиболее стабильными по составу являются композиции типа Станекс-ЗНЗ и Лимеда ПОС-1 , которые получили широкое применение в про-мып1ленности. Высокая рассеивающая способность электролита позволяет обеспечить максимально возможную равномерность покрытия по толщине в отверстиях печатных плат. [c.54]

    Для изготовления тиглей, лодочек, чашек и т. д., используемых в лабораториях, применяют химически стойкие металлы или металлы, имеющие высокую температуру плавления (табл. Е.2). Платина, пожалуй, наиболее широко применяемый для изготовления аппаратуры благородный металл, обладает и тем и другим свойстЕ1ами. При легировании платины родием или иридием улучшается не только ее механическая прочность, но и химическая стойкость. Максимальная температура применения платинородиевого сплава с содержанием 10% Rh достигает 1700°С. [c.479]

    КЛАССИФИКАЦИЯ И ОБЩ.АЯ Х.АРАКТЕРИСТИК.А МЕТОЛОЕ ИССЛЕДОВАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ Коррозионная стойкость не является абсолютной характеристикой только металла или другого конструкционного материала, а в равной степени зависит от коррозионной среды. Один и тот же материал, обладая высокой коррозионной и химической стойкостью в одних средах, может оказаться совершенно нэпригодным в других. Большое разнообразие видов коррозии, как по механизму, так и по условиям протекания и характеру коррозионного разрушения, требует использования различных методов исследования коррозионной стойкости металлов и сплавов. Главным здесь является по возможности более полная имитация условий их эксплуатации. [c.5]

    НИТРИДЫ — соединения азота с эле ктроположительнымп элементами (глав ным образом, с металлами), Н. обладают высокой твердостью, термической устойчивостью, тепло-и электропроводностью, химической стойкостью против действия кислот и щелочей, огнеупорностью. Н, применяются в сплавах. Некоторые Н обладают высокими каталитическими свойствами. [c.175]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    В табл. 1 для ряда веществ приведены значения удельного электрического сопротивления р, температурного коэффициента электрического сопротивления а и произведения а ]/р. Кроме чистой платины, обладающей высокой химической стойкостью, рассматривается ряд других веществ в качестве материала для нагревателя. Железо имеет, например, почти вдвое большее значение а]/р, чем платина. Так, платиновые сплавы, например платина — родий и платина — иридий, хотя и имеют меньшее значешш а по сравнению с чистой платиной, могут быть с успехом использованы в плечевых элементах благодаря высокому значению р. Это дает возможность с применением более толстой проволоки получить высокое сопротивление плечевых элементов при такой же их длине. Сплав платина — никель дает неудовлетворительные результаты при высоких температурах нагрева. Высокое значение аУр в случае висмута приведено только для сравнения. Висмут не может быть использован, так как он не вытягивается в проволоку. [c.124]

    Применение. Титан и его сплавы-очень ценный конструкционный материал. Они отличаются высокой прочностью, легкостью, тугоплавкостью, химической стойкостью при обычной температуре. Титан используют также в качестве легирующей добавки и как ве цество, связываюи(ее кислород, азот, водород и другие примеси в металле а малорастворимые соединения (иослед- [c.494]

    Главное преимущество тротила состоит в том, что являясь достаточно сильным бризантным взрывчатым веществом, он обладает сравнительно малой восприимчивостью к механическим воздействиям, это позволяет применять его для снаряжения всех видов боеприпасов, в том числе и бронебойных снарядов. Для производства тротила имеется бапьшая сырьевая база. Благодаря высокой химической стойкости хи< чическне и взрывчатые свойства тротила сохраняются даже при длительном (десятки лет) хранении. Ограниченная же реакционная способность позволяет приготовлять на его основе ряд других взрывчатых веществ, напрнмер. различные смеси и сплавы с гексогеном, смеси с аммонийной селитрой. Это улучшает баланс взрывчатых веществ — обстоя-тепьство исключительно важное в военное время. [c.81]

    Цинк применяют главным образом для приготовления различных сплавов и для покрытия металлов. Значительные количества цинка содержатся в сплавах, отвечающих составам [в /о(масс.)] 60 Си и 40 Zn — латунь 65 Си, 15 Ni и 20 Zn —нейзильбер. Из соединений цинка большое практическое значение имеют оксид, сульфат, хлорид и сульфид цинка. Оксид цинка служит основой для изготовления цинковых белил, отличающихся хорошей кроющей способностью и химической стойкостью. Значительное его количество используют в резиновой промышленности (наполнитель каучука в производстве автомобильных шин). Оксид цинка входит также в состав некоторых сортов стекла и глазурей. Сульфат цинка применяют для пропитки дерева (как противогнилостное средство), а хлорид цинка — для изготовления минеральных красок, для очистки поверхности при пайке латуни, меди, железа. Сульфид цинка применяют в производстве краски литопон (ZnS -f--t- BaS04), а также при изготовлении светящихся составов. В смеси с сульфидом кадмия dS он служит для изготовления экранов, телевизионных трубок, [c.431]

    Введение в твердый раствор никеля придает хромистым сталям более высокую химическую стойкость как за счет образования пассивной пленки оксида никеля, так и за счет перевода стали в более гомогенную (и, следовательно, в более коррозионностойкую) аустенитную структуру. Наряду с повышением коррозионвой стойкости никель способствует повышению пластичности, ударной вязкости, жаростойкости, а при использовании его в качестве основы вместо железа - и жаропрочности сплавов. В качестве аустенитообразующих элементов используют также азот, марганец, медь и кобальт. [c.14]

    Заменой палладия в промышленности служат, главным образом, его сплавы с никелем, иобальтом, марганцем, сл рьмой, серебром, золотом, повышающие износостойкость с сохранением низкого переходного сопротивления, с висмутом, оловом, повышающие способность покрытий к пайке в течение длительного времени с платиной, повышающие химическую стойкость покрытий У большинства сплавов палладия значительно уменьшается способиость наводороживания и поглощении различных газов [13 20, 31, 47]. [c.139]


Смотреть страницы где упоминается термин Сплавы химическая стойкость: [c.644]    [c.152]    [c.806]    [c.806]    [c.61]    [c.134]    [c.503]    [c.217]    [c.326]    [c.443]    [c.229]    [c.181]   
Справочник механика химического завода (1950) -- [ c.367 , c.376 , c.451 ]




ПОИСК







© 2025 chem21.info Реклама на сайте