Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биосенсоры на основе клеток

    Тканевые материалы растительного и животного происхождения успешно используют в качестве биокаталитических компонентов биосенсоров. Биокаталитические материалы этого класса просто создают естественное окружение для представляющего интерес фермента, в результате чего требуемая ферментативная активность заметно стабилизируется. Во многих случаях тканевые биосенсоры служат намного дольше, чем аналогичные биосенсоры с выделенными ферментами. Кроме того, тканевые материалы сохраняют достаточно высокую специфическую активность, необходимую для конструирования некоторых биосенсоров, тогда как выделенные ферменты в тех же условиях разрушаются. В большинстве случаев эти преимущества достигаются не в ущерб избирательности. Если же в тканевом материале протекают мешающие процессы, разрабатывают специальные меры по увеличению избирательности. В этой главе достоинства тканевых биосенсоров показаны на конкретных примерах. Рассмотрено также несколько биосенсоров на основе таких биокаталитических материалов, как фрагменты животных клеток. Наконец, впервые предложены возможные механизмы транспорта (вход, внутренний перенос и выход) субстрата и продуктов в иммобилизованных клетках ткани. [c.34]


    В данную группу сенсоров входят специальные устройства (см. разд. 3.4), состоящие из внутреннего ионоселективного электрода (обычно стеклянного) и соединенного с ним активного гидрофильного слоя. В этом слое один из компонентов анализируемого раствора (как правило, определяемое вещество, хотя и не всегда) превращается в форму, пригодную для потенциометрического измерения при помощи внутреннего ИСЭ. В качестве специфических химических реакций, лежащих в основе работы биосенсоров, обычно используют ферментативные реакции, которые проходят в гидрофильной мембране, содержащей подходящим способом иммобилизированный фермент. Можно применять также биохимические реакции, протекающие непосредственно в клетках или в моделях клеток, липосомах, которые иммобилизированы в тонком слое, прилетающем к ИСЭ, или, наконец, реакции в срезе биологической ткани, прикрепленном к ИСЭ (разд. 8.2). Активный ферментный слой непосредственно контактирует с ИСЭ, как, например, в ферментном электроде (разд. 8.1), или располагается в проточной системе таким образом, чтобы исследуемый раствор вначале соприкасался с слоем иммобилизированного фермента, а затем образующийся продукт реакции определялся при помощи проточного ИСЭ. В последнем случае речь идет об электроде с ферментным реактором [29] (рис. 8.1). ИСЭ можно также применять для определения продуктов ферментативных реакций, происходящих в гомогенной среде. Однако такой случай здесь рассматриваться не будет. [c.238]

    Из-за множества биокаталитических процессов, протекающих в клетках, избирательности действия сенсоров на основе цельных клеток ткани следует уделять особое внимание. Изучение избирательности биосенсора на основе ткани почки свиньи показало его пригодность для определения глутамина в сложных биологических объектах. Специально изучалось влияние большого числа соединений (мочевина, Ь-аланин, Ь-аргинин, Ь-гистидин, Ь-валин, Ь-серин, Ь-глутаминат, Ь-аспарагин, Ь-аспартат, О-аланин, О-аспартат, глицин и креатинин), которые могли бы создавать помехи работе сенсора, но оказалось, что они не дают заметного сигнала. Как известно, в клетках почки свиньи велика концентрация О-аминокислотной оксидазы [16], поэтому проверяли также отклик сенсора на различные О-аминокислоты. В присутствии кислорода и воды этот фермент катализирует окислительное деаминиро-вание нескольких О-аминокислот. Однако в специфических условиях работы глутаминовый биосенсор не обнаруживал чувствительности к проверяемым О-аминокислотам. То, что побочные биокаталитические процессы не влияют на сигнал биосенсора, по всей вероятности, обусловлено отсутствием флавинадениндинуклеотида в буферной системе [23]. [c.37]


    Наряду с цельными фрагментами тканей млекопитающих в биосенсорах можно эффективно использовать фракции тканевых клеток, иммобилизуя именно те субклеточные компоненты, которые обладают наибольшей биокаталитической активностью. Такой подход может быть весьма плодотворным, если необходимо увеличить количество иммобилизованного фермента или улучшить избирательность сенсора, устраняя мешающие ферменты, которые содержатся в других частях клетки. Показано, что некоторые субклеточные фракции можно использовать как аналитические реагенты. Так. для определения тироксина можно использовать микросомы печени крысы [34]. Первой удачной попыткой создания биосенсора на основе субклеточной фракции был биосенсор для определения глутамина [8]. В этом сенсоре митохондриальную фракцию клеток кортекса почки свиньи иммобилизовали на газоаммиачном датчике. Митохондрии содержат два изофермЬнта глутаминазы [15], активность которых и используют в глутаминовом биосенсоре. [c.53]


Смотреть страницы где упоминается термин Биосенсоры на основе клеток: [c.126]   
Искусственные генетические системы Т.1 (2004) -- [ c.350 , c.383 , c.392 ]




ПОИСК





Смотрите так же термины и статьи:

Биосенсоры



© 2025 chem21.info Реклама на сайте