Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциальные функции невалентных взаимодействий атомов

    Мы рассмотрели только два члена потенциальных функций органических молекул — энергию невалентных взаимодействий и энергию деформации валентных углов. В дальнейшем, когда речь пойдет о молекулах разных типов, мы остановимся на других компонентах потенциальных функций. При этом термину невалентные взаимодействия мы будем придавать условное значение, понимая под ними только те члены потенциальной функции, которые определяются дисперсионным притяжением и отталкиванием атомов вследствие перекрывания их электронных оболочек — эти эффекты описываются потенциалами типа 6-ехр или 6—12. Разумеется, торсионные взаимодействия, электростатическая энергия и т. д., которые будут рассмотрены далее, также следует классифицировать как невалентные взаимодействия, однако, поскольку они имеют аналитический вид, отличный от указанных атом-атом потенциалов, мы будем говорить о них как о других компонентах потенциальных функций. [c.73]


    В заключение следует отметить, что определяющую роль в установлении оптимальной спиральной конформации стереорегулярных полимеров играют отталкивания валентно не связанных атомов. Некоторые авторы [81, 82] игнорировали как деформации валентных углов, так и торсионную составляющую энергии и тем не менее получили почти во всех случаях вполне удовлетворительное согласие с опытом. Даже гибкость таких полимеров, как полиэтилен или гуттаперча, не говоря уже об изотактических полимерах, вероятно, может быть объяснена только невалентными взаимодействиями. Дело однако осложняется тем, что барьеры вращения малых, молекул уже никак не могут быть рассчитаны в согласии с опытом, если использовать только центральные атом — атом потенциалы и при этом потребовать переносимости этих потенциалов. Далее, поскольку мы желаем, чтобы силовое поле определенного типа описывало конформации как малых, так и больших молекул, мы вынуждены ввести нечто вроде торсионных членов в потенциальные функции для полимеров  [c.34]

    Межатомные невалентные взаимодействия подразделяются на ван-дер-ваальсовы, электростатические, торсионные и водородные связи. Каждый вид атом-атомных взаимодействий описывается полученной на основе полуклассических или классических предположений потенциальной функцией с системой параметров, подобранных эмпирически. Общая энергия невалентных взаимодействий [/общ (конформационная внутренняя энергия молекулы) предполагается в соответствии с принципом Борна-Оппен-геймера (1927 г.) независимой от энергии валентных связей и пред- [c.112]

    Перейдем теперь к рассмотрению торсионного члена потенциальной функции. Необходимость его связана с тем, что-потенциалы невалентных взаимодействий, полученные из различных физико-химических данных, не дают величин барьеров внутреннего вращения малых молекул, совместимых с опытными. Впервые это показали Мэзон и Кривой (87, 88], когда,, используя потенциалы, полученные из своих опытов по рассеянию инертных газов, они попытались вычислить барьеры внутреннего вращения в галоидзамещенных этана, а также в молекулах типа С В—ВС и Нз51—81Нз. Оказалось, что-рассчитанные барьеры в среднем были вдвое меньше экспериментальных, а барьеры в этане и метилсилане и вовсе получались равными нулю. Следовательно, для правильного описания барьеров необходимо еще что-то кроме атом — атом-потенциалов, зависящих только от расстояний между ядрами. [c.31]


Смотреть главы в:

Проблема белка -> Потенциальные функции невалентных взаимодействий атомов

Проблема белка Т.3 -> Потенциальные функции невалентных взаимодействий атомов




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие атомов

Потенциальная функция

Потенциальная яма



© 2025 chem21.info Реклама на сайте