Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение электронных оболочек атомо

    По способу заполнения электронных оболочек атомов различают,четыре электронных семейства элементов 5-элементы, р-элементы, -элементы и /-элементы. Каждое -семейство характеризуется общностью свойств, а также закономерным расположением ъ периодической системе Д. И. Менделеева. Эта система отражает все особенности в строении электронных оболочек атомов элементов. Свойства з-, р-, -элементов и их соединений рассмотрим в плане таблицы Менделеева. [c.65]


    В соответствии с особенностями строения электронных оболочек атомов элементы VII группы подразделяются на три подгруппы типические элементы (водород, фтор, хлор), элементы подгруппы брома (бром, иод, астат) и элементы подгруппы марганца (марганец, технеций, рений). [c.287]

    Каково строение электронных оболочек атомов ванадия, ниобия и тантала Охарактеризуйте их валентности и степени окисления в соединениях. [c.166]

    Приведите электронные конфигурации атомов элементов VII группы. На какие подгруппы подразделяются элементы этой группы Что общего а строении электронной оболочки атомов элементов данной подгруппы  [c.34]

    В дальнейшем на электронных схемах мы для упрощения будем указывать только неполностью занятые энергетические уровни, В соответствии с э 1им, строение электронной оболочки атома еле дующего элемента второго периода — бериллия (2 = 4)—выра жается схемой [c.89]

    Строение электронной оболочки атома по Бору. Как уже указывалось, в своей теории Нильс Бор исходил из ядерной модели атома. Основываясь иа положении квантовой теории света о прерывистой, дискретной природе излучения и на линейчатом характере атомны.х спектров, ои сделал вывод, что энергия >лектронов в атоме не может меняться непрерывно, а изменяется скачками, т. е. дискретно. Поэтому в атоме возможны не любые энергетические состояния электронов, а лишь определенные, разрешенные состояния. Иначе говоря, энергетические состояния электронов в атоме квантованы. Переход из одного разрешенного состояния в другое совершается скачкообразно и сопровождается испусканием или поглощением кванта электромагнитного излучения. [c.66]

    Особенность строения электронной оболочки атома водорода (как н гелия) не позволяет однозначно решить, в какой группе периодической системы он должен находиться. Действительно, если исходить И числа валентных электронов его атома, то водород должен нахо-д.1ться в I группе, что подтверждается также сходством спектров щ,е-лочных металлов и водорода. Со щелочными металлами сближает водород И его способность давать в растворах гидратированный положительно однозарядный ион Н+ (р). Однако в состоянии свободного иона Н + (г) — протона — он не имеет ничего общего с ионами щелочных мгталлов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов. [c.272]

    Строение электронной оболочка атома по Бору 67 [c.67]

    Можно ли применить подобные рассуждения к молекулам Да, можно, причем двояко. Во-первых, из спектроскопии известно, что характеристические частоты электронов в молекулярных системах лежат в видимой и ультрафиолетовой областях спектра, тогда как частоты колебаний ядер — в инфракрасной области, так что (oj / u ) 100 и критерий адиабатичности для молекул выполняется (правда, как мы увидим далее, — не всегда). Во-вторых, слоистое строение электронных оболочек атомов и молекул позволяет разделить электроны на группы в зависимости от скорости их движения, так как периоды движения оптических (валентных) электронов и электронов остова существенно различаются. В настоящее время адиабатическое разделение быстрых и медленных электронов применяется главным образом в теории атомов, и мы о нем в дальнейшем говорить не будем, сосредоточив внимание на адиабатическом разделении электронных и ядерных движений. [c.109]


    На основании строения электронных оболочек атомов элементов подгруппы скандия объясните, почему они имеют устойчивую валентность — И1, всегда электроположительны и носят основной характер. [c.165]

    Современная теория строения атомов и молекул неопровержимо свидетельствует о том, что основой периодического закона является строение электронных оболочек атомов химических элементов. Важнейшая химическая характеристика элементов главных подгрупп — валентность атомов — определяется структурой внешнего электронного слоя, конкретнее — числом неспаренных электронов. Строго обусловленные причины предопределяют периодичность заполнения электронных уровней в атомах с увеличением атомного номера, т. е. с возрастанием числа электронов. Это в свою очередь обусловливает периодическое изменение числа неспаренных элект  [c.18]

    Существование в периодической системе особых семейств элементов также связано с особенностями строения электронных оболочек атомов. Так называемые переходные металлы — это элементы, у которых при практически неизменном внешнем слое заполняется электронами подоболочка. Это элементы от 5с до гп в четвертом периоде, от V до С<а в пятом. Число их в каждом большом периоде равно десяти, по числу электронов, заполняющих /-подоболочку. Семейства лантаноидов, и актиноидов — элементы, у которых заполняется /-подоболочка прй неизменном внешнем слое. В этих семействах по 14 элементов, что опре- [c.61]

    Перейдем к рассмотрению закономерностей поведения электронов в атоме. Согласно современным представлениям, периодичность изменения свойств элементов, расположенных в порядке возрастания заряда ядра (атомного номера элемента), обусловлена периодичностью изменения в строении электронной оболочки атомов. Поэтому изучение строения этих оболочек — одна из важнейших задач химии. В модели, предложенной Э. Резерфордом, электроны рассматривались как частицы, движущиеся по плоским орбитам [c.25]

    В результате такого перехода образуются четыре неспаренных электрона (один 5- и три р-) 2зр . Это возможно потому, что состояния 25 и 2р очень близки в энергетическом отношении. Затраченная при этом энергия (676,2 кДж/моль) затем с избытком компенсируется при образовании четырех связей. Но, учитывая строение электронной оболочки атома углерода в возбужденном состоянии, можно ошибочно предположить, что, например, в молекуле метана имеются четыре неравноценные связи одна 5 — 5-связь и три 5—р-связи. Это противоречит экспериментальным данным, согласно которым в симметрично построенных соединениях углерода (метан, четыреххлористый углерод и др.) все связи С — Н или С — С1 совершенно одинаковы. Теоретическое объяснение этого факта основывалось на возможной гибридизации (смешении) атомных орбиталей (Л. Полинг, Ж. Слейтер, 1931). Было показано, что химические связи не могут существовать в изолированном, чистом виде они обязательно влияют друг на друга. Так, в случае метана [c.16]

    По характеру химической связи элементов с углеродом и другими элементами в их составе элементоорганические соединения делят на две большие группы. В первую группу включают соединения в- и р-элементов непереходных элементов), а во вторую — органические производные й- и /-элементов (переходных элементов). Для соединений первой группы характерно образование ковалентных полярных <7-связей. Для органических производных второй группы типичны комплексные соединения с участием -электронов предвнешней электронной оболочки атомов элемента. Существуют и другие способы классификации, однако свойства элементоорганических соедршений столь разнообразны, что проще рассмотреть наиболее типичные из них в порядке изменения строения электронной оболочки атома элемента, как это делалось при рассмотрении свойств неорганических соединений. [c.588]

    Такие понятия, как конфигурация и терм, являются характеристиками электронного строения молекулы, они неприменимы в строгом смысле к описанию состояния отдельных атомов в составе молекулы. Тем не менее с использованием соображений симметрии удается для некоторых молекул установить примерное строение электронной оболочки атома в составе молекулы. Хорошо известным примером в этом отношении может служить молекула метана, в которой, как это впервые показал Л. Полинг, эффективная конфигурация атома углерода есть Этот вопрос обсуждается, как правило, в литературе весьма подробно, см. [17], [8], [12], [20]. Рассмотрим подобную задачу на примере более сложной системы — комплекса №Уг, где в качестве У может быть взят атом кислорода. Симметрия комплекса предполагается Сзу Атомы переходных элементов имеют малую энергию возбуждения. Для атома N1 (см. гл. 3, 6) разность полных энергий АЕ = Е Зс 4х) — ( F, 3 4х ) составляет всего лишь 205 см" = 0,03 зВ. При столь незначительной величине АЕ орбитальные энергии 4s и Зй -злект-ронов претерпевают тем не менее существенные изменения. Например, для основного в конфигурации с F-тepмa = -0,70693, 45 = = -0,27624, в то время как для терма -0,45730 и = -0,23576. [c.218]

    Таким качественным скачком стало познание строения атома и, как следствие, познание физической причины повторяемости свойств химических элементов. Как теперь известно, она зависит от повторяемости в строении электронной оболочки атома, а не от атомного веса, как считал Д. И. Менделеев и его современники. Было установлено, что повторяемость свойств от периода к периоду является зеркальным отображением структуры электронной оболочки от квантового слоя к слою. Оказалось, что этим повторяемость не ограничивается кроме квантовых слоев в электронной оболочке есть еще и подслои. Они тоже вызывают повторяемость химических свойств уже внутри периодов системы. Табличная модель системы уже не была в состоянии отражать наглядно эти вторичные виды повторяемости, а формулировка Периодического закона не была адекватной смыслу явления. [c.148]


    Адсорбционная способность кокса является мерой его поверхностной активности, которая, как и реакционная способность, обусловливается наличием и характером свободных валентностей, строением электронных оболочек атомов поверхности. [c.224]

    На какие вопросы должна ответить теория строения электронной оболочки атома Вот некоторые из них почему спектр одиоатом-ного газа имеет линейчатый характер и его структура зависит от атомного номера элемента Почему энергия последовательной ионизации атома имеет дискретные значения Чем определяется периодическая зависимость изменения энергии ионизации, сродства к электрону, радиуса атомов от атомного номера элементов Почему атомы способны образовывать химическую связь и химические свойства элементов подчиняются периодическому закону  [c.17]

    Исследование спектров дало возможность, основываясь на периодической системе Менделеева, определить строение электронных оболочек атомов различных элементов и вместе с тем выяснить физические основания самого периодического закона. [c.19]

    Самая высокая окжутительная способность свободных галогенов в сравнении с другими свободными элементами, самая малая устойчивость кислородных соединений галогенов в сравнении с другими кислородными соединениями, самая большая сила галогеноводородных кислот среди всех бескислородны кислот, самый ионный характер связи в солях этих кислот, — все эти и многие другие важнейшие особенности химии галогенов объяс- няются строением электронных оболочек атомов галогенов и являются как бы развернутой характеристикой понятия самые типичные неметаллы . [c.61]

    Из вышеизложенного можно сделать вывод, что по мере роста заряда ядра периодически повторяются сходные электронные структуры элементов, а следовательно, и повторяются их свойства, зависящие от строения электронной оболочки атомов. [c.29]

    Оптические свойства полимеров определяются строением электронных оболочек атомов, из которых состоят молекулы. Оптические свойства полимеров, характеризующие их взаимодействия с электромагнитным излучением, обычно изучаются в диапазоне длин волн [c.232]

    Строение электронных оболочек атомов, валентность [c.68]

    Найдите ошибки в следующих схемах строения электронных оболочек атомов  [c.68]

    Общность ряда существенных физических свойств металлов, их резкое отличие от свойств типичных неметаллов в значительной мере обусловлены своеобразием внутреннего строения образуемых металлами кристаллических структур. В свою очередь поскольку силы, связывающие атомы металлов в кристаллическую решетку, определяются состоянием валентьых электронов свободных атомов, причины своеобразия физических свойств металлов следует искать в особенностях строения электронных оболочек и в природе металлической связи. Так как химические свойства свободных металлов и их соединений неразрывно связаны с физическими свойствами и также определяются строением электронных оболочек атомов и кристаллической структурой их соединений, следует кратко остановиться на этих важнейших характеристиках, определяющих совокупность физико-химических свойств металлов. [c.107]

    Составьте схемы строения электронных оболочек атомов  [c.43]

    Строение электронных оболочек атома. Планетарная модель атома 43 8. Модель атома по Бору 45 9. Состояние электронов в атомах 48 10. Атомные орбитали 49 11. Периодический закон и периодическая система химических элементов Д. И. Менделеева 54 [c.381]

    Характерной особенностью применяемых в настоящее время методов глубокой очистки является то, что все они основаны на использовании различия в химических или физико-химических свойствах разделяемых веществ, т. е. в свойствах, обусловленных главным образом строением электронных оболочек атомов или молекул разделяемых веществ. Методы, в основе которых лежит различие в физических свойствах разделяемых веществ, например разделение в центрифугах, электромагнитная сепарация, широко используемые для разделения изотопов, для глубокой очистки веществ применения пока не находят. [c.10]

    На Енешнем слое у -элементов находятся 1—2 электрона (пз-со-стояиие), остальные валентные электроны расположены в (п—1) -состоянии предвнешнего слоя. Подобное строение электронных оболочек атомов -элементов определяет ряд их общих свойств. Простые вещества, образованные переходными элементами, являются металлами (число валентных электронов в их атомах заметно меньше числа орбиталей). [c.503]

    Закономерности строения электронных оболочек атомов [c.78]

    Глава 4. Периодический закон. Связь Периодического закона со строением электронных оболочек атомов [c.86]

    Закономерности строения электронных оболочек атомо [c.430]

    Составьте схемы строения электронных оболочек атомов с порядковыми номерами 35 и 37. Определите по строению атома, к какому семейству принадлежит каждый из них. [c.43]

    Строение электронных оболочек атома. [c.43]

    Строение электронной оболочки атома представляет особый интерес для химии. С перераспределением электронов в оболочках атомов и молекул связаны все химические превращения, поэтому химические свойства элементов определяются структурой электронных оболочек их атомов. [c.60]

    Приведенные принципы, лежащие в основе строения электронных оболочек атомов, позволяют понять закономерности периодической системы элементов Д. И. Менделеева. [c.44]


Смотреть страницы где упоминается термин Строение электронных оболочек атомо: [c.64]    [c.18]    [c.27]    [c.121]   
Химия для поступающих в вузы 1985 (1985) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Электронная оболочка

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте