Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физиология размножения растений

    В последние десятилетия биологам удалось гораздо полнее изучить физиологию размножения растений и те химические изменения, с которыми связан переход от вегетативного роста к репродуктивному. Позднее мы обсудим этот важный процесс более подробно. Теперь же мы рассмотрим систему, более простую чем покрытосеменное растение, а именно заросток папоротника (рис. 3.11). У папоротника заросток представляет со- [c.97]


    Физиология размножения растений [c.372]

    ФИЗИОЛОГИЯ РАЗМНОЖЕН и РАСТЕНИЙ [c.370]

    В России первые работы по клональному микроразмножению были проведены в 60-х годах XX в. в лаборатории Р. Г. Бутенко (Институт физиологии растений им. К. А. Тимирязева). В настоящее время созданы и развиваются лаборатории клонального микроразмножения, связанные с нуждами селекции, размножением декоративных, лекарственных и других растений. Кроме того, технология используется для размножения лучших экземпляров взрослых лесных деревьев, особенно хвойных, для сохранения редких и исчезающих видов растений. [c.193]

    Как уже указывалось, вспышки размножения вреди-телей становятся более вероятными при оптимальных условиях окружающей среды. Широкомасштабное возделывание не обладающих устойчивостью культур в чистых посевах (монокультура) стимулирует репродуктивную способность вредителей, питающихся данным видом, так как при этом отпадает важнейший природный ограничивающий фактор — недостаточная обеспеченность кормом. Неправильное внесение удобрений и прежде всего чрезмерные дозы азота делают многие растения более предрасположенными к вредителям. Кроме того, некоторые средства защиты влияют на физиологию листьев, и растения становятся более восприимчивыми к сосущим вредителям. Обработки почвы и не в последнюю очередь используемые при этом машины зачастую непосредственно или косвенно определяют активность вредителей. Предотвращение таких опасностей, создаваемых самим человеком, принадлежит к методам защиты, которые называются агротехническими. [c.41]

    До недавнего времени лес не выращивали, а только рубили. С увеличением потребности в древесине и бумаге все возрастающее значение стало приобретать выращивание быстрорастущих древесных пород. Поскольку леса обычно бывают очень смешанного генетического происхождения, для выведения быстрорастущих пород деревьев необходимы интенсивный отбор и-скрещивание. Главная проблема при этом состоит в том, чтО. многие древесные породы созревают и воспроизводятся медленно. Если удастся найти или создать быстрорастущие виды-деревьев, то как разработать программу их скрещивания, кото рая укладывалась бы в приемлемые сроки И как можно размножать созданный материал, с тем чтобы быстро получать столько деревьев, сколько необходимо для того, чтобы они покрыли площадь в сотни тысяч гектаров Физиология растений позволила решить некоторые из стоящих перед нами проблем, создав быстро растущие, быстро созревающие, устойчивые к болезням древесные породы, в частности хвойные. Эти новые типы деревьев достигают размеров, при которых их можно использовать, в несколько раз быстрее, чем прежде. Хотя быстрый рост обычно снижает прочность древесины для строительных целей, древесные породы новых линий идеально подходят для производства бумаги, для которого важна лишь масса производимой древесины. Одна из проблем состоит в том, что такие хвойные породы очень трудно размножать черенками, так как они плохо укореняются, а при размножении семенами не получается однородной популяции с желаемыми признаками. Все шире применяемый метод тканевых культур позволил в ряде случаев получить новые клоны сеянцев, генетически идентичных исходному дереву желаемого типа. Хотя попытки размножать все древесные породы с желательными признаками при помощи, тканевых культур не всегда были успешными, можно с уверенностью утверждать, что в ближайшем будущем этот метод станет общепринятым для многих линий древесных пород. [c.517]


    Четвертый способ — размножение в биореакторах микроклубнями. Это один из способов ускоренного размножения оздоровленного материала. О. Мелик-Саркисов сконструировал гидропонную установку, позволяющую получать около 7000 микроклубней с 1 м при массе одного кт ня 5 г. Предусмотрена последующая механизированная посадка их в грунт. В отделе биологии клетки и биотехнологии Института физиологии растений им. К. А. Тимирязева РАН создана эффективная полупромышленная замкнутая система пневмоимпульсного биореактора для получения микроклубней картофеля, в которой предусмотрена возможность воздействия на направление и скорость процессов клубнеобразования. Технологии клонального микроразмножения в биореакторах разработаны не только для сельскохозяйственных, но и для декоративных растений (лилии, гладиолусы, гиацинты, филодендроны и т.д.). Однако созданные установки пока носят лабораторный, модельный характер. [c.196]

    Значительной частью наших знаний о биологических часах мы обязаны острой проницательности и тщательно выполненным опытам немецкого физиолога Эрвина Бюннинга. Наблюдая над 10 сортами сои, он заметил четкую корреляцию, между их фотопериодической реакцией и сонными движениями листьев (рис. 12.7). Поэтому он предположил, что оба процесса регулируются одними и теми же внутренними часами. Из множества изученных им сортов формы с наиболее выраженными листовыми движениями были облигатными короткодневными растениями в отношении цветения, а остальные — большей частью нейтральными. По-видимому, те же определяемые фитохромами ритмические реакции, которые управляют движениями листьев, регулируют и фотопериодические процессы. От последних зависит, какая доля ресурсов растения будет направляться на вегетативный рост, размножение, создание резервов и про> цессы, ведущие к покою. Так как листовые движения менее сложны, чем фотопериодические явления, именно их изучали, чтобы подойти к анализу взаимодействий фитохрома с часами. [c.366]

    Прослеживая этапы развития физиологии растений, можно видеть, что физиологические функции, которые столетие назад только описывались, в настоящее время детально изучены на биохимическом и молекулярном уровнях роль органоидов, энергетика, ассимиляция СО2, многие участки обмена веществ, механизмы регуляции и наследственности. Близки к разрешению такие процессы, как фотохимические реакции фотосинтеза, механизмы транспорта веществ. В то же время в современной физиологии наряду с молекулярно-биохимическим подходом все более возрастает интерес к растительному организму как целостной системе со всеми ее внутренними и внешними взаимосвязями. Поэтому в предлагаемый читателю учебник включена - глава Систе.мы регуляции и интеграции у растений , которая предшествует обсуждению механизмов, лежащих в основе различных сторон функциональной активности растений. Наряду с традиционными разделами (фотосинтез, дыхание, водный режим, минеральное питание и др.) в учебник введена глава по гетеротрофному способу питания растений, так как незеленые ткани и органы, а при отсутствии света клетки всех частей растения питаются гетеротрофно. В отдельные главы выделены описания таких физиологических функций, как секреция, дальний транспорт веществ, половое и вегетативное размножение, движение. Рост и развитие растений рассматриваются на клеточном уровне (гл. 10) и на уровне целого организма (гл. 11 и 12). В этих процессах ведущую роль играет взаимодействие клеток между собой. [c.8]


Смотреть страницы где упоминается термин Физиология размножения растений: [c.380]    [c.2]    [c.221]    [c.286]   
Смотреть главы в:

Физиология растений -> Физиология размножения растений




ПОИСК





Смотрите так же термины и статьи:

Физиология



© 2025 chem21.info Реклама на сайте