Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм регуляции репликации

    Реальные механизмы регуляции репликации еще не расшифрованы. У эукариот определенную роль в регуляции репликации, по-видимому, играют гистоны. [c.73]

    Сплошными линиями показаны основные пути синтеза и функционирования белковых посредников, штриховыми линиями —основные механизмы регуляции. На схеме не обозначено, но подразумевается участие белковых посредников в процессах репликации, транскрипции, трансляции и транспорта [c.121]


    В заключение мне хотелось бы остановиться на одном из возможных механизмов регуляции метаболической активности ДНК, действующем на заключительном этапе ее синтеза — на репликации. [c.126]

    Чтобы выяснить механизм того или иного биохимического процесса, почти всегда необходимо иметь представление о кинетике отдельных его стадий. Репликация и транскрипция ДНК, а также, вероятно, синтез белков и многочисленные процессы регуляции активности генов сопровождаются изменением вторичной структуры. Если бы скорость этих изменений была достаточно велика, биологические системы при своем функционировании могли бы просто выжидать, когда спонтанно возникнет необходимое состояние, и использовать его. В противном случае в биологических системах должны существовать специфические катализаторы (в большинстве случаев белки), которые взаимодействуют непосредственно с участками нуклеиновых кислот, имеющими невозмущенную вторичную структуру, и увеличивают скорость их перехода в нужное состояние. Эти два механизма соответствуют двум совершенно разным требованиям к организмам. Для того чтобы понять основные особенности функционирования нуклеиновых кислот, нужно оценить скорость конформационных перестроек в них. [c.332]

    Однако раскрытие механизмов регуляции репликации затрудняется сложным, многоэтапным характером этого процесса и его легкой повреждаемостью, препятствующей воспроизведению in vitro в полностью реконструированной системе. До сих пор большая часть работ по изучению репликации ДНК осуществляется в модельных фаговых системах (фаги G4, М13, ФХ174 Т-фаги и др.). Значительные успехи достигнуты также при использовании термочувствительных мутантов бактерий, у которых процесс репликации ш.)вреждается при температурах выше оптимальной (ls-мутанты). [c.31]

    Сравнение путей биосинтеза основных низко молекулярных компонентов клетки, а также путей утилизации источников углерода и азота показывает, что они в основном одинаковы у большинства организмов. Матричные процессы репликация, транскрипция и трансляция — также сходны. Все это заставляет предполагать, что основная нагрузка в ходе эволюции падала на изменения не столько структурных генов, сколько регуляторных систем. К сожалению, знания о механизмах регуляции у эукариот еще недостаточны. Тем не менее уже можно отметить некоторые фундаментальные различия регуляции у про- и эукариот. При [c.493]

    Казалось бы, что на рубеже 70-х гг. молекулярная биология достигла определенной степени завершенности были установлены структура [1347] и механизмы репликации ДНК, провозглашена центральная догма экспрессии гена (транскрипция, трансляция), выяснены основные аспекты регуляции активности гена. В этот период главным объектом молекулярно-генетических исследований были микроорганизмы. Переход к эукариотам (включая человека) встретился с дополнительными проблемами и трудностями, и кроме того, существовавшие в то время методы не позволяли рассчитывать на получение принципиально новых результатов. Стремительный прорыв в развитии молекулярной генетики в начале 70-х гг. стал возможен благодаря появлению нового экспериментального инструмента-рестрикционных эндонуклеаз. Был открыт путь для широкомасштабного получения генных продуктов (физиологически значимых белков) и для генетического манипулирования с различными организмами. Наши знания о структуре и функции генетического материала у эукариот, включая человека, заметно пополнились. Новые, совершенно неожиданные факты, имеющие как теоретическое, так и практическое значение, были открыты в разных областях, таких, как действие гена, популяционная генетика, эволюция и генетическая консультация, включая пренатальную диагностику (разд. 4.3 и 9.1). Достигнутые успехи заставили ученых задуматься об этической стороне манипулирования с человеческим зародышем, об опасности возникновения возбудителей в процессе генно-ин-женерных исследований. Многие из этих вопросов были подняты самими учеными, активно работающими в данной области. В настоящее время большинство исследователей считает, что опасения, касающиеся [c.122]


    За десять лет, прошедших после обнародования теории двойной спирали ДНК и принципа комплементарности, раскрыты молекулярные механизмы репликации ДНК установлены процессы, отвечающие за расшифровку генетической информации и регуляцию синтеза генных продуктов выяснены многие причины, по которым эти продукты синтезируются в измененном виде. Со времени выхода в свет этой публикации и до наших дней открытие Уотсона и Крика нисколько не утратило своего значения. В частности, если бы не была установлена структура ДНК, сейчас не существовало бы технологии рекомбинантных ДНК. [c.45]

    Изучение механизма регуляции репликации фактора R1 привело Дж. Ларсена с соавторами (1984 г) к созданию нового типа векторных плазмид серии pOU. Поскольку интенсивность репликации плазмиды R1 находится в прямой зависимости от уровня синтеза белкового продукта плазмидного гена герА, авторы сконструировали гибридные плазмиды, у которых в непосредственной близости от гена герА встроен фрагмент ДНК фага Я, содержащий ген l857 и промотор pR, направленный в сторону гена герА. При температуре ниже 35 °С в клетке находится примерно 1 молекула плазмиды серии рОи. При температуре 42 °С в результате инактивации термочувствительного репрессора с1857 происходит дерепрессия промотора pr, приводящая к конститутивной неконтролируемой репликации плазмиды. Уже через 1-2 ч после термоиндукции плазмидная ДНК составляет половину всей ДНК клетки (более 1 ООО копий на клетку). Параллельно с амплификацией плазмиды происходит и сверхсинтез кодируемых ею белков. [c.140]

    Таким образом, можно заключить, что в основе клеточной дифференцировки лежит пе постоянное изменение состава генома клеток, а различное выражение мириад генов, содержащихся в геноме. Это означает, что механизмы эмбрионального развития следует объяснить, исходя из представлений о регуляции работы генов, подобных описанным в гл. XX для прокариотов. С одним примером такого дифференцированного выражения генов в развитии мы уже сталкивались в начале этой главы в случае тысячекратной репликации ДНК ядрышкового организатора в ооцитах амфибий. Следует отметить, что подобный способ регуляции, основанный на факультативной репликации отдельных генов с целью увеличить матричную емкость этих генов в транскрипции, не встречается у прокариотов (и поэтому мы его не обсуждали в гл. XX). [c.513]

    Накопление критической клеточной массы и репликация ДНК. Эти процессы являются подготовительными этапами к процессу собственно деления клетки. Механизмы регуляции биосинтеза мак-ромолекулярных клеточных компонентов, составляюнщх основную часть биомассы, уже рассматривались в предыдущих разделах. Следует отметить, что хотя в различных условиях размер клеток (а следовательно, и пороговая биомасса) у данного организма может варьировать, в стандартных условиях этот признак достаточно стабилен и даже имеет определенное таксономическое значение. Таким образом, существуют специальные механизмы, включающие процесс деления клетки при накоплении критической (пороговой) биомассы. [c.65]

    Бактериофаг X оказался настоящей сокровищницей систем генетической регуляции, изучение которых позволило заметно расширить и углубить наши представления о механизмах генетической регуляции у прокариот. В процессе литического развития гены фага X (см. гл. 7) регулируются таким образом, чтобы обеспечивать контролируемую репликацию ДНК, рекомбинацию, синтез структурных белков и сборку частиц потомства фага. В то же время лизогенам по фагу X присущ иной способ экспрессии генов. В лизогенных бактериях репрессированы все гены профага, используемые при литическом развитии, и экспрессируется только один ген, обозначаемый с1, который контролирует репрессию генов профага. Экспрессия гена с1 в лизогенах обеспечивает также иммунитет клетки к повторной инфекции другим фагом X. [c.183]

    Одним из достижений последнего десятилетия в области понимания механизмов репликации и транскрипции было открытие важной роли некоторых транскрипционных факторов в регуляции репликации. Наиболее убедительные данные о характере участия транскрипционных факторов в репликации были получены при детальном изучении жизненного цикла ряда вирусов в эукариотических клетках и при функционально-делецион-ном анализе ori и фланкирующих их последовательностей в дрожжах S. erevisiae. [c.240]

    Важное достижение М. б.-раскрытие на мол. уровне механизма мутацгш. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции бьш А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит, успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток. способствовало развитию генетики соматич. леток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит, успех М. 6.-первый КИМ. синтез геиа, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способотвовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом). [c.110]


    Инициация репликации плазмиды R1 Е. oli регулируется белком репрессором, кодируемым одним из генов R1. Были получены мутантные, плазмиды, которые кодируют аномальный репрессор или же имеют несовершенный механизм регуляции его образования. Некоторые из этих мутантов — температуро-чувствителькые (репрессор неактивен при 43 °С). При 30 репликация идет -нормально, и на клетку образуется 1—2 плазмидные копии, а при 43 °С репликация инициируется гораздо чаще, так что в клетке накапливается по нескольку сот плазмид. Небольшой сегмент R1, содержащий участок начала репликации и связанные с ними регулирующие элементы, был использован для создания плазмид-йекторов, применяемых при клонировании разнообразных генов. Преимущество таких векторов заключается в том, что при повышенной температуре с их помощью можно получать множества копий клонируемого гена, а следовательно, и много белка, кодируемого этим геном. [c.306]

    Еще один механизм регуляции, обнаруженный значительно позднее, — регуляция с помощью антисмысловых РНК. Специальный тип маленьких молекул РНК имеет последовательность оснований, комплементарную сегменту РНК-мишени, связываясь с которой, антисмысловые РНК могут блокировать репликацию ДНК, транскрипцию или трансляцию. Такие РНК кодируются антисмысловыми генами (antisense genes). Оказалось, что этот способ регуляции широко распространен среди бактерий и вирусов. Такой регуляции могут подвергаться репликация плазмид, синтез белков-поринов, репродукция фага I.. [c.237]

    Кроме описанного комплекса, было обнаружено образование специфического комплекса белка оболочки с репликативной промежуточной формой (РПФ) фаговой РНК. Таким образом, можно думать, что главную роль в механизмах регуляции играет изменение относительной интенсивности процессов репликации и трансляции. Однако результаты последних опытов Сугимы, проведенных как in vivo, так и in vitro, показали, что белок оболочки непосредственно регулирует процесс трансляции. Механизм взаимодействия белка со специфическим участком РНК неизвестен, но внешне явление это напоминает взаимодействие ДНК фага X и репрессора XGi (см. гл. ХИ). Вопрос этот требует дальнейшего изучения. [c.248]

    Модель в какой-то степени напоминает механизм, участвующий в аттенуации транскрипции, при котором альтернативные способы спаривания последовательности РНК позволяют или предотвращают образование вторичной структуры, необходимой для терминации транскрипции, осуществляемой РНК-полимеразой (гл. 15). Формально эта модель равнозначна постулированию присутствия в клетке репрессора, который подавляет функционирование вновь введенной ДНК, аналогично репрессору фага лямбда (гл. 16). Вместо белка-репрессора, который связывает новую ДНК, РНК связывает вновь синтезированный предшественник РНК-затравки. Способность РНК I подавлять инициацию репликации может быть частью цикла негативного контроля, с помощью которого несовместимость связана с контролем числа копий. Однако мы еще не знаем роли этих ( обытий в поддержании характерного числа копий olEl ДНК (примерно 20 на 1 клетку). Возможно, она определяется соотношением между частотой инициации РНК-затравки и способностью затравки запускать синтез ДНК. Этот тип несовместимости может быть следствием событий, используемых для регуляции репликации. Вполне вероятно также, что несовместимость является результатом механизмов, с помощью которых при делении плазмиды распределяются между дочерними клетками. [c.408]

    Это необходимые подготовительные этапы собственно клеточного деления. Следует отметить, что размер клеток каждого микроорганизма, растущего сбалансированно в стандартных условиях, является достаточно постоянной величиной, чтобы служить одним из таксономических признаков. В.Д. Донаши даже ввел понятие элементарной клетки, т. е. наименьшей, возможной для данного микроорганизма. Таким образом, существуют механизмы, включающие процесс деления клетки при накоплении ее пороговой массы. Наличие такой связи (положительного и отрицательного контроля) мы уже обсуждали при рассмотрении регуляции репликации в гл. 11. [c.113]

    В числе продуктов ранних генов — фагоспецифическая РНК-полимераза, закодированная в гене 1. Это относительно простой фермент, который в отличие от бактериальной РНК-полимеразы содержит всего одну полипептидную цепь (Мг=107 ООО). Вирусный фермент узнает иной набор промоторов — поздние промоторы, которые имеют сходные между собой, но не идентичные первичные структуры. Поздние промоторы расположены преимущественно в поздней области фагового генома, но встречаются и в ранней, в частности они предшествуют участку оП, с которого начинается репликация вирусной ДНК. Поздние гены транскрибируются с разной эффективностью и в определенной последовательности. Не все механизмы этой регуляции расшифрованы, но некоторые из них достаточно понятны. В частности, в поздней области есть районы, которые организованы сходно с активно транскрибируемы. районом генома нитчатых фагов (см. с. 290) такие участки имеют несколько промоторов и ограничены общим сильным терминатором. Отсюда считывается набор молекул мРНК разных размеров, но с одинаковыми З -концами. Чем ближе ген примыкает к тер.минатору, тем чаще он представлен в таком наборе. мРНК- С другой стороны, есть участки ДНК, которые содержат общий промотор и несколько последовательно расположенных относительно слабых терминаторов, ко- [c.298]

    Наиболее простой цикл репликации / транскрипции вирусной РНК — это когда с геномной РНК снимается комплементарная копия и эта копия, в свою очередь, служит матрицей для синтеза геномной РНК роль мРНК в образовании всех необходимых для размножения вируса белков выполняет родительская РНК. Если отвлечься от частностей, то этот принцип реализуется у фага Ор и у вируса полиомиелита. Однако стратегии этих вирусов различаются в одном существенном отношении. Фаг Ор размножается в клетках прокариот, поэтому его (+)РНК может функционировать как истинная полицистронная мРНК. Хозяин вируса полиомиелита — эукариотная клетка. Соответственно на (+)РНК этого вируса имеется единственная точка инициации трансляции, и все зрелые вирус-специфические белки возникают в результате ограниченного протеолиза единого полипротеина-предшественника. Как и у ДНК-содержащих вирусов, у вирусов с РНК-геномом разные вирус-специфические белки требуются в разных количествах и в разное время, а образование всех этих белков из единого предшественника затрудняет количественную и временную регуляцию их производства. Поэтому у РНК-содержащих вирусов эукариот возникли механизмы, обеспечивающие появление разных мРНК для [c.331]

    Читатель найдет в этой книге подробные сведения о механизмах трансляции, транскрипции, репликации, амплификации, рестрикции-модификации и рекомбинации генов, о сплайсинге про-мРНК, о процессинге белков, о структуре и функционировании обычных генов, множественных генов и мобильных генетических элементов, о регуляции экспрессии генов, прежде всего регуляции транскрипции, о структурной организации хромосом и, наконец, о механизмах иммунного ответа. [c.5]

    Однако даже в геноме самых мелких ДНК-вирусов закодированы ферменты, избирательно инициирующие синтез их собственной ДНК, для чего они узнают на хромосоме вируса особую нуклеотидную последовательность - точку начала репликации. Это существенно, потому что вирус может успещно размножаться лищь при том условии, если ему удастся игнорировать регуляторные сигналы клетки, которые в противном случае не дадут вирусной ДНК удваиваться более чем один раз в каждом клеточном пикле. Мы до сих пор не знаем, как эукариотические клетки регулируют синтез своей ДНК, и можно надеяться, что знакомство с механизмами, при помощи которых вирусы избавляются от этой регуляции (а их изучать, разумеется, гораздо легче), даст нам ключ к пониманию регуляторных механизмов клетки-хозяина. [c.317]

    Создание высокоактивных штаммов с заданными свойствами во многом зависит от уровня знаний об организации генома и регуляции метаболизма микробной клетки. Для Е. соИ известны молекулярные механизмы репликации ДНК, транскрипции и трансляции, регуляции активности разных генов, лучше всего разработаны приемы генетического конструирования in vivo и in vitro. Именно поэтому первые работы по созданию промышленных штаммов микроорганизмов современными методами выполнены на этом микроорганизме. Распространение методологии генной инженерии на другие объекты требует дополнительных исследований. Как уже было показано, здесь достигнуты значительные успехи — сконструированы удобные векторы для псевдомонад, бацилл, актиномицетов и дрожжей. На этой основе будут созданы и уже создаются новые высокоактивные штаммы для промышленности. [c.180]

    Книга итальянского ученого профессора Пьетро Воль-пе посвящена рассмотрению биохимии клеточного цикла. В доступной форме автор излагает общие вопросы биологии нормальной и раковой клетки, молекулярной биологии последовательных этапов передачи генетической информации (репликации, транскрипции и трансляции). Все эти процессы автор анализирует по стадиям клеточного цикла, рассматривая их в системе временных орбит . Особое внимание П. Вольпе уделяет проблеме модификации ДНК и ее возможной роли в регуляции транскрипции, а также разбору механизмов вирусной инфекции и химиотерапии рака. Небольшой объем книги не позволил охватить все работы по рассматриваемым проблемам в ней представлены и интересно обсуждаются результаты, полученные в основном в лаборатории самого. автора. В книге излагаются также оригинальные молекулярнобиологические концепции и гипотезы П. Вольпе относительно регуляции процессов передачи генетической информации в клеточном цикле, механизма вирусной инфекции и возможных подходов к химиотерапии рака. [c.5]

    Как осуществляется хромосомная регуляция общей активности клетки и генная регуляция синтеза соответствующего фермента у растений, можно показать на следующем примере. Клетки, ткани, органы растения могут быть живыми, дышать, но, находясь одновременно в состоянии покоя, не расти, если даже для этого имеются самые благоприятные условия. Почки ( глазки ) свеже-убранных клубней картофеля длительное время находятся в состоянии покоя и начинают прорастать только через несколько недель после уборки. Но если на покоящиеся клетки подействовать гормоном — гибберелловой кислотой, то глазки начнут прорастать. В состоянии покоя геном картофельного глазка полностью репрессирован и не может синтезировать РНК in vitro. Если из покоящихся глазков выделить хроматин, то и он при добавлении полимеразы не способен к синтезу РНК. В то же время глазки, вышедшие через известное время из состояния покоя, синтезируют РНК in vitro, а выделенный из них хроматин при добавлении полимеразы способен к синтезу РНК. зависимому от ДНК. Таким образом, гормон гибберелловая кислота в данном случае играет роль эффектора, выводящего из состояния репрессии весь геном. Ёследствие этого включается механизм синтеза РНК, на основе которого начинаются синтез ферментов, репликация ДНК, деление клеток и рост. [c.307]

    В настоящее время наши знания об организации генома бактериальной клетки, содержащей около 5 тыс. генов, достаточно полны. Для Е. oli, наиболее изученного микроорганизма, известно уже около 2500 генов. Познаны молекулярные механизмы репликации ДНК, транскрипции и трансляции, регуляции активности генов. Тенденцией сегодняшнего дня является сознательное конструирование штаммов микроорганизмов с заданными свойствами с использованием фундаментальных данных молекулярной биологии, генетики, генной инженерии. Собственно говоря, применение названных подходов в сочетании с приемами классической селекции и составляет суть современной селекции микроорганизмов. [c.8]

    Наряду с обычными нуклеотидными последовательностями промоторной и терминаторной областей транскрипции у эукариот обнаружены такие специфические элементы регуляции, как усилители, или энхансеры (enhansers), и глушители (silen ers). Энхансе-ры впервые были найдены в геноме вируса SV 40. Это последовательность длиной в 72 п. н., повторенная тандемно. Она повышает эффективность транскрипции с промоторов вируса, находясь на своем обычном месте, вблизи ori — начала репликации вирусного генома, а также при искусственном перенесении в другие участки этого генома, имеющего размер 5243 п. н. Аналогичные энхансеры обнаружены в геноме млекопитающих. У них отсутствует видимая протяженная гомология. Они действуют как усилители транскрипции, находясь на расстоянии нескольких сот и даже тысяч пар нуклеотидов от регулируемого гена. Механизм действия энхансе-ров может быть связан с изменением нуклеосомной структуры хроматина. [c.424]


Смотреть страницы где упоминается термин Механизм регуляции репликации: [c.72]    [c.71]    [c.70]    [c.7]    [c.209]    [c.71]    [c.195]    [c.120]    [c.120]    [c.289]    [c.23]    [c.139]    [c.78]    [c.78]    [c.38]    [c.205]    [c.223]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.63 , c.68 ]

Молекулярная биология (1990) -- [ c.63 , c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2025 chem21.info Реклама на сайте