Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Топология функции плотности

    При воздействии механической нагрузки на полимер он деформируется, и при этом индивидуальные макромолекулы оказываются в напряженном состоянии. Величина накопленной внутренней энергии зависит главным образом от степени деформации и строения (топологии) конкретной молекулы. Переплетенные цепи могут скользить, растягиваться или разрушаться в зависимости от скорости релаксации. В расплавах распутывание и деструкция цепей — конкурирующие процессы, зависящие от состава (плотности сетки зацеплений) и вязкости полимера, которая в свою очередь является функцией температуры, молекулярной массы, ММР и химической структуры (эффективной площади поперечного сечения полимерной цепи и наличия боковых групп). Разрыв цепей происходит обычно с наибольшей легкостью при сравнительно низких температурах, когда макромолекулы находятся в напряженном состоянии. Влияние основных параметров на степень механохимических превращений рассмотрено в гл. 3. В целом механизм этого явления определяется скорее не химическим строением полимера, а положением точек разрыва свя- > зей в макроцепи. [c.17]


    Подход Бейдера. Одна из наиболее удачных попыток сохранения классической концепции атома в молекуле принадлежит Р. Бейдеру и его сотрудникам, исходившим из анализа распределения электронной плотности в молекуле. Электронная плотность р(х,у,2) задает некоторое скалярное поле в трехмерном пространстве, которое может быть охарактеризовано, например, его совокупностью экстремальных точек, линий и поверхностей, особых точек и т.п. Так, максимальные значения электронной плотности достигаются в точках, где находятся ядра, причем эти точки являются фактически для р(г) точками заострения (из-за поведения -функций). Чтобы четче понять топологию функции р(г), можно воспользоваться векторным полем, связанным с функцией р, а именно полем градиента Ур(г) - gradp(r), выявляющим прежде всего экстремальные свойства исходной функции р(г). [c.487]

    Взаимосвязь между разными классами актин-связывающих белков становится яснее, если рассматривать ее с точки зрения теории гелей, предложенной Р1огу. Эта теория утверждает, что при достаточно большой вероятности сшивок между полимерами формируется сшитад трехмерная сеть. Тем самым предсказывается существование точки гелеобразования , в которой должен происходить резкий переход от раствора к гелю, отчасти сходный в математическом отношении с такими фазовыми переходами, как плавление и испарение дальнейшее увеличение количества сшивок — за точкой гелеобразования — должно приводить лишь к изменению-жесткости геля. Таким образом, белки, образующие поперечные сшивки, будут переводить вязкий раствор Р-актина в состояние геля, а те белки, которые разрушают филаменты или вызывают увеличение их числа, станут растворять гель путем снижения средней длины полимеров, не сопровождающегося возрастанием количества-сшивок гель растворится, когда плотность распределения сшивок упадет ниже уровня, определяемого точкой гелеобразования. Миозин может взаимодействовать с гелем и вызывать его сокращение. Теория гелей оказывается полезной при сопоставлении свойств актин-связывающих белков разных классов и при разработке методов исследования, их функций. Следует, однако, иметь в виду, что теория гелей рассматривает лишь изотропные структуры и сама по себе не учитывает топологических особенностей конкретных систем. Как станет ясно из. дальнейшего, топология цитоскелета является чрезвычайно важной его характеристикой, которую теория гелей предсказать пока не может. [c.17]


Смотреть страницы где упоминается термин Топология функции плотности: [c.487]   
Квантовая механика и квантовая химия (2001) -- [ c.493 ]

Квантовая механика и квантовая химия (2001) -- [ c.493 ]




ПОИСК





Смотрите так же термины и статьи:

Топология БТС



© 2025 chem21.info Реклама на сайте