Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитоскелет

Рис. 19.10. Схематическое изображение нейрона коры головного мозга человека с указанием некоторых гистологических особенностей, характерных для болезни Альцгеймера. У синапсов образуются сенильные бляшки, содержащие амилоидные скопления и обломки клеток, В теле нейрона накапливаются нейрофибриллы, включающие агрегаты из белков цитоскелета и других белков. Происходят и другие изменения, здесь не показанные. Рис. 19.10. <a href="/info/376711">Схематическое изображение</a> нейрона <a href="/info/1877945">коры головного мозга человека</a> с <a href="/info/655370">указанием некоторых</a> гистологических особенностей, характерных для <a href="/info/186983">болезни Альцгеймера</a>. У синапсов образуются сенильные бляшки, содержащие амилоидные скопления и обломки клеток, В <a href="/info/104089">теле нейрона</a> накапливаются <a href="/info/101655">нейрофибриллы</a>, <a href="/info/385072">включающие</a> агрегаты из <a href="/info/1380712">белков цитоскелета</a> и <a href="/info/915815">других белков</a>. Происходят и <a href="/info/622696">другие изменения</a>, здесь не показанные.

    Основным свойством цитоскелета является его подвижность. Прн движении протоплазмы большое число точек скрепления боковых цепей полипептидных молекул непрерывно разрывается и вновь восстанавливается. Боковые цепи полипеп-тидных молекул белка могут взаимодействовать друг с другом в точках сцепления путем образования водородных связей или же за счет сил Ван-дер-Ваальса. [c.402]

    В петлях цитоскелета находятся разнообразные глобулярные белки, молекулы которых при развертывании сами могут превращаться в скелетные образования. Внутри цитоскелета находятся и другие органические и неорганические вещества, а также вода. Протоплазма живой клетки представляет собой полифазную коллоидную систему, состоящую из высокомолекулярных соединений, диспергированных в водной среде. [c.402]

    А. присутствует во всех клетках эукариотов (10-15% по массе от всех белков). В немышечных клетках он формирует цитоскелет (микрофиламенты цитоплазмы клеток). [c.77]

    Сократительная функция. В акте мышечного сокращения и расслабления участвует множество белковых веществ. Однако главную роль в этих жизненно важных процессах играют актин и миозин—специфические белки мышечной ткани. Сократительная функция присуща не только мышечным белкам, но и белкам цитоскелета, что обеспечивает тончайшие процессы жизнедеятельности клеток (расхождение хромосом в процессе митоза). [c.21]

    Есть основания думать, что цитоплазма с ее цитоскелетом обладает свойствами тиксотропии. Тиксотропия — фазовые переходы гель = золь, обратимые или необратимые, происходящие иод действием механических сил. Пример тиксотропного тела — обычный кефир, переходящий из твердого состояния (гель) в жидкое (золь) при взбалтывании. [c.414]

    Силы, формирующие зародыш при онтогенетическом развитии, генерируются цитоскелетом. Тем самым изучение механохимии цитоскелета имеет фундаментальное значение для понимания всех процессов индивидуального развития. Для исследования морфогенеза надо понять, как эти силы координируются во всей популяции клеток, с тем чтобы обеспечить правильную последовательность форм тканей. Об онтогенезе рассказано в 17.9. [c.415]

    Вследствие относительно больших размеров эукариотические клетки нуждаются в некоторой внутренней жесткости. В большей степени эта жесткость обеспечивается цитоскелетом, образованным специальными белковыми трубочками и волокнами. Кроме того, сокращение волокон играет важную роль как во внешних движениях клеток, так и различных перемещениях внутри клеток. Подобные движения являются, в частности, необходимыми в уже описанном движении хромосом от центра молекулы к полюсам при делении клеток. [c.26]


    В то же время известно, что как в прокариотических, так и в эукариотических клетках часть рибосом, организованных в полирибосомы, является свободными (хотя в эукариотах они, повидимому, связаны с каким-то цитоскелетом ), а другая часть прикреплена к мембранам. В прокариотах полирибосомы могут сидеть на внутренней стороне цитоплазматической мембраны клетки, в то время как в эукариотах местом размещения мембраносвязанных рибосом является так называемый шероховатый эндо-плазматический ретикулум цитоплазмы прикрепленные рибосомы могут продуцировать Лептид непосредственно в мембрану. Соответственно, в зависимости от локализации рибосом, ко-трансляцион-ное внерибосомное сворачивание растущего полипептида может происходить либо в водной среде цитоплазмы, либо в гидрофобном окружении липидного бислоя мембраны. [c.274]

    Эукариотические клетки содержат ядро, цитоплазму, внутриклеточные органеллы, а также цитоскелет. По размеру они во много раз превышают клетки прокариот. В частности, диаметр средней эукариотической клетки превышает таковой у прокариот в 10—15 раз. Еще в большей степени отличается объем клеток. У эукариот он может быть на три-четыре порядка больше, чем у прокариот. Отличительной особенностью эукариотических клеток является также наличие различных по строению и выполняемым функциям внутриклеточных органелл (рис. 1.4). [c.12]

    С учетом новых групп белков, выявленных в цитоскелете, становится очевидным, что само название кажется не совсем адекватным, поскольку цитоскелет [c.123]

    Заякоривание цитоскелета, обеспечивающее поддержание формы клеток и органелл и клеточной подвижности. [c.27]

    Микротрубочки и микрофиламенты, по-видимому, исполняют роль цитоскелета и формируются из белка тубулина. Они входят в состав центриолей, играющих важную роль в делении ядра, а также в состав жгутиков и ресничек. [c.42]

    Однако даже в состоянии золя протоплазма сохраняет пластичность, т. е. свойства твердого тела. Об этом свидетельствуют многочисленные опыты по падению в жидкой протоплазме посторонних микроскопических частиц. Из курса физики известно, что микроскопические тела падают в жидкости с постоянной скоростью (закон Стокса). В протоплазме же подобное падение идет с задержками, толчками, с отклонениями, как будто падающие частицы на своем пути нстречают невидимые препятствия. На основании этих фактов был сделан вывод, что в протоплазме, даже в состоянии золя, имеется тончайший цитоскелет, основой которого являются вытянутые полипептидные цепи белка. Эти цепи взаимодействуют друг с другом своими боковыми цепями, образуют тончайшую сеть, т. е. молекулярный остов протоплазмы. [c.402]

    Мембранные белки наряду с липидами играют важную структурную роль, кроме этого они ответственны за выполнение подавляющего большинства специализир. ф-ций отдельных мембран. Они служат катализаторами протекающих в мембранах и на их пов-сти р-ций (см., напр.. Дыхание), участвуют в рецепции гормональных и антигенных сигналов и т. п. (см., напр., Аденилатциклаза), выполняют транспортные ф-ции, обеспечивают пиноцитоз (захват клеточной пов-стью и поглощение клеткой жидкости), хемотаксис (перемещение клетки, обусловленное градиентом концентраций к.-л. в-ва в среде) и т.п. Мн. из периферич. белков-компоненты цитоскелета (совокупность филамен-тов и микротрубочек цитоплазмы) и связанных с ним сократит, элементов, к-рые обусловливают форму клеткн и ее движение. [c.29]

    Во время процесса дедифференциации, который у всех клеток сходен, клетки должны утратить характерные черты исходной ткани. В первую очередь они теряют запасные вещества — крахмал, белки, липиды. В них разрушаются специализированные клеточные органеллы, в частности хлоропласты, но возрастает число ами-лопластов. Кроме того, разрушается аппарат Гольджи, перестраиваются эндоплазматический ретикулюм и элементы цитоскелета. [c.165]

Таблица 11 Некоторые характеристики актина миозииа и тубулина в элементах цитоскелета животных клеток Таблица 11 <a href="/info/1181770">Некоторые характеристики</a> актина миозииа и тубулина в элементах <a href="/info/1889971">цитоскелета животных</a> клеток
    Никаких доказательств того, что процесс образования пятен и шапочки имеет какое-то отношение к стимуляции синтеза антител, не существует. Тем не менее зтот процесс интенсивно изучается, поскольку, возможно, полученные при зтом сведения помогут понять причины высокой подвижности связанных иммуноглобулинов и других рецепторов в клеточных мембранах. Существует предположение, чтО рецепторные молекулы (например, гликофорин) проходят через мембрану и связываются с цитоскелетом , образованным микрофиламента-ми и микротрубочками [97]. Рецептор, находясь в одном из состояний, должен быть свободным, чтобы диффундировать в плоскости мембраны с образованием пятен , зтот процесс не требует затраты знергии. В другом состоянии рецептор должен быть связан с микрофиламента-ми и микротрубочками, движения которых могли бы обеспечивать процесс образования шапочки , требующий знергии. В некоторых случаях инициация синтеза антител в лимфоцитах может происходить при связывании лектинов. Поскольку структура конканавалина А и характер его связывания с углеводными группами (разд. В 3) уже известны, мы надеемся, что исследование взаимодействия лектинов с клеточными поверхностями приблизит нас к пониманию сложных процессов, лежа щих в основе ответа на антиген [98, 99]. [c.386]


    Молекула активного ауксина имеет значительный отрицательный заряд за счет диссоциации карбоксильной группы и слабый заряд на кольце. Расстояние между плюсовым и минусовым зарядами равно примерно 5,5 А. Принято считать, что отрицательно заряженная группа необходима для ауксиноподобных соединений. Т.В. Лихолат от.ме-чает ряд соединений с ауксиновой активностью, но со структурой, не соответствующей данным положениям. Это и тиокарбаматы, которые не имеют ненасыщенного кольца, и производные бензойной кислоты, у которых нет боковой цепи. Весьма любопытно высказывание ОуегЬеек 1.(1959) [3]. По его мнению, молекула ауксина, как и любого другого регулятора роста должна подходить по форме и размерам к ячейкам, которые имеются в цитоскелете клетки. В ячейках молекула ауксина занимает место так, что ее боковые активные цепочки находятся в области водородных связей цитоскелета, т. е. так, чтобы заполнить недостающее звено в сетке водородных связей. Кислотная группа ауксина может служить таким звеном. Она должна быть расположена совершенно прямо и к тому же должна быть электронно-изолированной от кольца молекулы. Кольцо является только массой, [c.113]

    Участки белка, которые обращены во внеклеточную среду, могут подвергаться гликозилированию. В мембранах растений и бактерий полисахара играют самостоятельную роль, образуя наружную оболочку. В клетках животных, в которых наружный слой включает углеводы, имеется внутренний цитоскелет, состоящий из актина и других легко полимеризующихся белков он имеет регулярную связь с мембранными белками и выполняет формообразующую и опорную функцию (рис. 9.4). [c.301]

    Фултон А. Цитоскелет. Архитектура и хореография клетки.— М. Мир, 1987  [c.584]

    Цитоскелет состоит из микротрубочек, микрофиламентов и микротрабе-кулярной сети. В свою очередь, микротрубочки состоят из упакованных белковых нитей, построенных из а- и р-тубулина и расположенных вокруг полой сердцевины. Они участвуют в транспорте веществ и делении клеток. Микро-филаменты также состоят из нитей, представляющих собой ожерелья соединенных друг с другом белковых молекул. Эти нити способствуют различным клеточным перемещениям. Микротрабекулярная сеть также состоит из тонких белковых нитей, способствующих стабилизации формы клеток. [c.14]

    Хотя жидкомозаичная модель сейчас общепризнана, следует помнить, что она все же представляет собой упрощенное и схематичное отражение столь сложной и разносторонней системы, как биологическая мембрана. Одним из основных постулатов этой модели является предположение о свободном движении молекул белков и липидов в двумерной фазе липидного бислоя. Однако вскоре выяснилось, что не все белки и липиды способны к свободному перемещению, в некоторых случаях их подвижность сильно ограничена. Во многих мембранах интегральные белки находятся в фиксированных положениях за счет высокой концентрации белка, вследствие его агрегации, образования липидных доменов, а также в результате взаимодействия белков с цитоскелетом, образуемым внутренними структурами клетки. [c.585]

    Рис 31 Клетка эукариот 1 — плазматическая мембрана 2 — пероксисома 3 — ядро 4 — ядрышко 5 — аппарат Гольджи 6 — шерохо ватый эндоплазматический ретикулум 8 — центриоль 9 — цитоскелет 10 — секреторная гранула 11 — экзоцитотический пузырек 12 — эндоцитотический пузырек 13 — эндосома 14 — лизосома 13 — цитозоль 16 — митохон дрия 17 — рибосомы [c.107]

    Рис 38 Клетка млекопитающего животно го (на основании иммунофунофлуорес ценного анализа) цитоскелет 1 ядро 2 [c.120]

    Белки цитоскелета по своим функциям могут быть подразделены на гелеобразуюш ие, фрагментирующие, кэпирующие (от англ [c.123]

    Клетки эукариот в большинстве своем крупнее клеток прокариот по диаметру и объему, пространственно более организованны и дифференцированны, чему во многом способствует цитоскелет Внутреннее содержимое клетки разделено на отграниченные мембранами пространства — отсеки, или компартменты (от англ ompartment — отделение, купе, отсек) Поэтому компартментализация типична для эукариотической клетки и несвойственна подавляющему большинству прокариотических клеток [c.124]

    Компартментализация эукариотической клетки служит веским доказательством специального (более высокого, чем у прокариот) разграничения функций и привязки их к определенным структурам Это относится и к белковому синтезу Мономерные рибосомы, в отличие от полисом, находятся в цитоплазме клетки в свободном состоянии Полисомы, как правило, располагаются либо цепочкой ближе к ядерной мембране (связанные полисомы) и в тех местах, где мРНК входит в цитоплазму, либо они (так называемые "свободные полисомы") ассоциируются через посредство мРНК с клеточным цитоскелетом (см ) Это обусловлено качеством синтезируемых белков на полисомах [c.175]

    Кроме стимуляции роста синдекан-1 также участвует в регуляции морфологии клетки благодаря содействию организации элементов цитоскелета, прежде всего, эпителиальных клеток. [c.554]


Смотреть страницы где упоминается термин Цитоскелет: [c.184]    [c.31]    [c.184]    [c.302]    [c.414]    [c.576]    [c.69]    [c.340]    [c.629]    [c.120]    [c.121]    [c.121]    [c.123]    [c.124]    [c.537]    [c.553]    [c.554]    [c.26]   
Смотреть главы в:

Молекулярная биология клетки Том 3 -> Цитоскелет

Трансформированная клетка -> Цитоскелет

Молекулярная биология клетки Сборник задач -> Цитоскелет


Биологическая химия Изд.3 (1998) -- [ c.301 ]

Биофизика (1988) -- [ c.414 , c.415 ]

Биологическая химия (2002) -- [ c.26 ]

Биохимия (2004) -- [ c.14 ]

Молекулярная биология клетки Том5 (1987) -- [ c.16 , c.35 , c.40 , c.52 , c.133 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.41 , c.42 ]

Биология Том3 Изд3 (2004) -- [ c.202 , c.204 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.254 ]

Биохимия человека Т.2 (1993) -- [ c.342 , c.346 ]

Биохимия человека Том 2 (1993) -- [ c.342 , c.346 ]

Биологические мембраны Структурная организация, функции, модификация физико-химическими агентами (2000) -- [ c.31 , c.34 ]

Биохимия мембран Эндоцитоз и экзоцитоз (1987) -- [ c.6 , c.10 , c.23 , c.24 , c.42 , c.43 , c.47 , c.51 , c.54 , c.77 ]

Биохимия мембран Клеточные мембраны и иммунитет (0) -- [ c.113 ]

Физиология растений (1989) -- [ c.13 , c.24 , c.248 ]

Молекулярная биология клетки Сборник задач (1994) -- [ c.193 , c.194 , c.195 , c.196 , c.197 , c.198 , c.199 , c.200 , c.201 , c.202 , c.203 , c.204 , c.205 , c.206 , c.207 , c.208 , c.209 , c.210 , c.211 , c.212 , c.213 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.254 ]




ПОИСК







© 2025 chem21.info Реклама на сайте