Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь, атомный и катионные радиус

    Рассмотрим закономерности изменения ионных радиусов в зависимости от атомного номера по группам элементов (рис. 46). Можно видеть, что в I группе радиусы катионов сильно возрастают от лития к калию и располагаются на прямой, имеющей большой наклон вправо, тогда как значительно большие радиусы катионов калия, рубидия и цезия ближе друг к другу и лежат на другой прямой с меньшим наклоном. Водород имеет очень малый радиус и потому сильно смещается вправо. Ветвь для катионов элементов подгруппы меди, имеющих малые радиусы, располагается значительно правее ветви для калия—цезия, причем серебру соответствует несколько больший радиус катиона, нежели меди, что отражается соответствующим изломом кривой. [c.126]


    Кривая теплот образования хлоридов с возрастанием атомного номера катиона имеет столь же отчетливо выраженный периодический характер (рис. 31). Разделению элементов на периоды и здесь отвечают инертные газы, не образуюш ие сколько-нибудь устойчивых хлоридов и соответствую-ш ие поэтому наиболее глубоким минимумам. В 1—3-м периодах максимумы теплот образований хлоридов приходятся на водород, литий и натрий. В 4—6-м периодах выявляются по два главных максимума. Первый приходится на щелочной металл — калий, рубидий, цезий или франций, — что соответствует катионам с внешней электронной конфигурацией р и наибольшим ионным радиусом. Вторые максимумы теплот образования хлоридов приходятся на хлориды цинка, кадмия (с катионами, имеющими внешнюю d °-подоболочку) и одновалентного таллия. Минимумы приходятся на элементы I и VIII групп — медь, рутений и золото — и примерно соответствуют окончанию заполнения d-подоболочки у переходных металлов и началу заполнения следующей 8 р -оболочки. В четвертом периоде высшая валентность у хлоридов металлов V—VI групп не проявляется, минимум отсутствует и соответствующий участок кривой имеет сложную форму. Заполнение /-оболочек у лантаноидов и актиноидов намечается в виде третичной периодичности теплот образования их хлоридов. При этом теплоты образования хлоридов приблизительно линейно убывают от La lg к LuGlg в связи с лантаноидным сжатием катионов. Однако тепло-там образования хлоридов европия и иттербия отвечают явные минимумы, разделяющие семейство лантаноидов на цериевую и иттриевую группы. Для актиноидов, которые в отличие от лантаноидов в соединениях с хлором проявляют высшие валентные состояния, теплоты образования хлоридов [c.108]

    Размеры ионов могут обуславливать появление определенных кристаллических форм. Например, карбонатные минералы имеют тригональную или ромбическую сингонию. Низшую ромбическую симметрию получают только те катионы, радиусы которых превышают 1-А. Следовательно, карбонаты стронция, свинца, серебра и бария образуют ромбические кристаллы. В противоположность сказанному, карбонаты меди, никеля, марганца, магния и железа (II) достигают высшей симметрии тригональных кристаллов, так как их атомные радиусы менее 1 А. Карбонат кальция представляет собой интересный пограничный случай, так как ионный радиус кальция равен 0,99 А. При различных условиях он способен кристаллизоваться в виде тригональных кристаллов кальцита или как ортором-бический арагонит [18]. [c.12]


Органические аналитические реагенты (1967) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Атомный радиус

Медь, атомный и катионные радиус валентные состояния

Медь, атомный и катионные радиус ионизационные потенциалы

Медь, атомный и катионные радиус реагенты для определения

Медь, атомный и катионные радиус стереохимия комплексов

Медь, атомный и катионные радиус электронное строение

Радиус катионов



© 2025 chem21.info Реклама на сайте