Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оператор числа частиц

    Выражение (2.135) не зависит от числа электронов в системе, эта зависимость содержится в функционале состояния IV- Последний может являться собственной функцией оператора числа частиц 7V, а в более общем случае — суперпозицией состояний. [c.112]

    Введем операторы числа частиц [c.389]

    Тогда — оператор числа частиц и собственные функции оператора (84,5) .... ..) полностью определяют состояние системы. [c.392]


    Оператор Гамильтона (84,12) не коммутирует с оператором числа частиц ns — Ьз Ь , поэтому число частиц в одночастичных состояниях, определяемых функциями %s V), не является интегралом движения даже при отсутствии взаимодействия меледу частицами. Таким образом, выбор функций Xi( ) характеристики одночастичных состояний нельзя признать удачным. Однако если мы не знаем решений уравнения (84,4), то можно воспользоваться недиагональным оператором (84,12) [c.393]

    Гамильтониан (84,17) не диагонален относительно операторов = числе частиц. Поэтому число частиц в состоянии фу не сохраняется. Если в начальный момент времени состояние [c.395]

    В представлении чисел заполнения состояние системы определяется указанием числа частиц в каждом одночастичном состоянии. Пусть оператор числа частиц в состоянии 5 имеет вид [c.404]

    Оператор числа частиц [c.411]

    Чтобы использовать (87,27) для определения химического потенциала, выразим оператор числа частиц 7V = 2 2 че-  [c.419]

    Заметим, что наша пробная волновая функция не соответствует состоянию с определенным числом частиц N, поскольку при боголюбовских преобразованиях число частиц не сохраняется. Но так как полный гамильтониан Н записан для определенного числа частиц, применимость неравенства (7.35) к состоянию Ч " означает, что (7.35) справедливо также для той компоненты Ч ", которая одновременно является собственной функцией оператора числа частиц N. Для наших целей этого достаточно. [c.36]

    Введем еще в (Я) оператор числа частиц N с областью определения 3 гш (Я), положив N (Я) == п п N) Из этого определения сразу же следует существенная самосопряженность оператора N. [c.299]

    Легко проверить, что V / оператор Л/ = ( оператор числа частиц в состоянии с номером у ) будет проектором, причем все эти проекторы коммутируют друг с другом. Разложение // в прямой интеграл будет строиться по семейству А = (Лу) . В качестве ядерного пространства Ф возьмем пространство, построенное в замечании 5 п. 4, гл. 3, 3, по счетному семейству ограниченных операторов (Лу, Ц/, Семейство Л и операторы (/, как нетрудно подсчитать, связаны сле- [c.377]

    Собственные функции оператора (82,15) и оператора числа частиц blsbqsi соответствующие числу фононов п = n g в состоя- [c.386]

    Пример 1.1. Оператор числа частиц N в кваитовой теории поля задается как оператор в (Нд) такой, что N (1 о) = , Ж , т. е. Л = dr (1). Соответствующая полугруппа = Г (е Ч) в (Нд) действует как умножение на п g Z+, t>0. [c.511]

    Пример 1.3 (оператор числа частиц в шредингеровском представлении). Оператор числа частяц N = йТ (1) нз примера 1.1 выделяется тем, что он коммутирует с каждым оператором Г (А) н для его рассмотрения подходит любое ядерное оснащение Нд. Образ оператора числа частиц при изоморфизме Сигала будем по-прежнему обозначать N = 1. Найдем его вид в случае функциональной реализации пространства Фока. [c.520]



Смотреть страницы где упоминается термин Оператор числа частиц: [c.154]    [c.154]    [c.155]    [c.67]    [c.68]    [c.27]    [c.550]   
Спектральные методы в бесконечномерном анализе (1988) -- [ c.299 , c.381 , c.511 ]




ПОИСК





Смотрите так же термины и статьи:

Оператор

Частица Число



© 2025 chem21.info Реклама на сайте