Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обыкновенные дифференциальные уравнения с разделяющимися переменными

    Общая характеристика инварнантных задач теории нестационарной фнльтрацин. В главе II было показано, что основные задачи гидродинамической теории нестационарной фильтрации приводят к краевым, смешанным или начальным задачам для нелинейных, как правило, дифференциальных уравнений в частных производных параболического типа. Нелинейность вообще характерна для многих актуальных задач современной гидродинамики газодинамики, теории волн, теории движений вязкой жидкости и т. д. В настоящее время не существует сколько-нибудь общих эффективных аналитических методов решения достаточно широких классов нелинейных задач математической физики это в полной мере относится и к теории фильтрации. Поэтому в теории фильтрации (как и во многих других разделах математической физики вообще и механики сплошных сред, в частности) уже давно привлекли внимание своеобразные частные решения, которые выражаются через функции одной переменной. Вначале эти решения обратили на себя внимание только потому, что их получение сводилось к решению обыкновенных уравнений и представлялось (особенно в домашинную эру) более простым, чем решение уравнений в частных производных в общем случае. При построении различных приближенных методов решения, более общих, эти решения часто использовались как эталоны, позволяющие оценить точность метода. (Приближенные методы аналитического решения сохраняют, особенно в теории фильтрации, свое значение и сейчас, при широком внедрении машин, поскольку эти методы [c.57]


    В этом разделе рассмотрим вопрос об устойчивости стационарных режимов реакторов идеального смешения — простейшей из систем, исследуемых в теории химических реакторов. Б режиме идеального смешения (см. раздел УП.З) значения всех переменных одинаковы по всему объему реактора. В соответствии с этим стационарный режим реакторов данного типа описывается алгебраическими, а нестационарный — обыкновенными дифференциальными уравнениями. Такие системы принято называть системами с сосредоточенными пара- [c.324]

    Полученное соотношение есть обыкновенное дифференциальное уравнение с х в качестве искомой функции и правой частью не зависящей явно от времени. В таком уравнении переменные разделяются, и оно может быть легко проинтегрировано. [c.143]

    Сведение уравнений пограничного слоя к обыкновенным дифференциальным уравнениям. Приведенные в п. 2.3 уравнения пограничного слоя являются нелинейными дифференциальными уравнениями в частных производных, которые трудно решить. Исключение составляют некоторые специальные случаи, когда достаточное число членов можно опустить, чтобы свести уравнения к обыкновенным дифференциальным уравнениям, например течение Куэтта, течение в трубе. Имеются, к счастью, и другие случаи, когда эти уравнения можно свести к обыкновенным дифференциальным уравнениям. Это происходит тогда, когда существует естественная система координат s, т], связанная с декартовой системой S, у соответствующими преобразованиями, в которой производные зависимых переменных разделяются, в результате чего получаются обыкновенные дифференциальные уравнения. [c.43]

    Общее математическое описание нестационарных объектов представляют в виде совокупности дифференциальных уравнений (обыкновенных или в частных производных), отражающих изменение переменных процесса во времени. Каждую переменную можно охарактеризовать временем релаксации в течение которого переменная изменяется на определенную долю от полного диапазона ее изменения при постоянных значениях остальных переменных. Пусть при этом все переменные объекта можно разделить на две группы, дня одной из которых Г,- < а дня другой г,- > и, кроме того, справедливо соотношение означающее, что время релаксации переменных первой группы значительно меньше времени релаксации переменных второй группы. Тогда с некоторой степенью погрешности можно принять, что переменные первой группы, имеющие значительно меньшее время релаксации, безьшерционны, и считать в уравнениях математического описания производные от указанных переменных по времени равными нулю. С помощью такого приема иногда удается весьма существенно упростить нестационарную математическую модель благодаря замене части дифференциальных уравнений конечными. [c.18]



Смотреть главы в:

Математическое моделирование физико-химических процессов -> Обыкновенные дифференциальные уравнения с разделяющимися переменными




ПОИСК





Смотрите так же термины и статьи:

Аир обыкновенный

Уравнение дифференциальное



© 2025 chem21.info Реклама на сайте