Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Параллельные двигательные пути

    Параллельные двигательные пути [c.113]

    Схема, представленная на рис. 22.3, требует некоторых уточнений. Во-первых, строгая иерархия в организации систем управления движениями не всегда соблюдается. Наряду с последовательными иерархическими уровнями (проекционные зоны — сегментарные двигательные программы — мотонейроны) существуют и обходные пути — это прямые связи от проекционных зон к мотонейронам. Иными словами, система управления движениями включает не только последовательные, ной параллельные пути. Сходная картина была недавно обнаружена и в сенсорной системе. Создается впечатление, что как в чувствительных, так и в двигательных системах наличие параллельных и последовательных путей обеспечивает большую пластичность и более широкие возможности обработки информации (см. также последующие разделы). [c.97]


    Все эти данные позволяют сделать несколько важных выводов относительно организации систем управления движениями. Во-первых, пирамидная и экстрапирамидная системы, по-видимому, представляют собой в какой-то степени обособленные и параллельные каналы управления спинным мозгом. Во-вторых, на всех важнейших уровнях (кора, ствол мозга,, спинной мозг) эти две системы образуют взаимные связи. В-третьих, на деятельность экстрапирамидных центров ствола влияют связи от обширных областей коры. Все эти структуры,, взятые вместе, называются экстрапирамидной системой с корковым управлением, и от них следует отличать пирамидную систему с корковым управлением. Наконец, если первичные сенсорные зоны коры представляют собой составную часть нисхо-дяших двигательных путей, то что же следует считать двигательной корой Следует ли причислять к ней также и сенсорные области Из всего сказанного выше мы должны сделать вывод, что электрическое раздражение — это искусственный и ограниченный метод исследования, позволивший нам выявить лишь некоторые компоненты систем, участвующих в регуляции движений. Здесь, как и в любых других областях изучения центральной нервной системы, для понимания функциональной организации нужны данные, полученные с помощью многих различных методов. [c.115]

    Как отмечалось, в механизме проведения сигналов по нерву посредством волны деполяризации источником необходимой энергии служит неравновесное состояние градиентов концентрации катионов — калия, натрия, кальция. Скорость проведения нервного импульса зависит от скорости изменения этих градиентов, т. е. от быстроты конформационной перестройки мембранных компонентов. По мнению Катца [130], скорость распространения волны деполяризации зависит от продольной электропроводности внутренней области аксона и поэтому она тесно коррелирует с толщиной волокна. Как известно, один из способов увеличения скорости передачи сигналов состоит в уменьщении осевого сопротивления кабеля путем увеличения диаметра волокна. Именно это ре-щенпе избрала природа для удовлетворения потребности в высокоскоростной передаче импульсов у некоторых беспозвоночных. Например, быстрое движение кальмара при бегстве от опасности контролируется небольшим числом гигантских аксонов, иннервирующих обширную мускулатуру его мантии, которая действует как реактивный двигатель. Однако для животного, которому по-М1ИМ0 быстроты реакции необходимо и наличие огромного числа каналов для передачи множества сенсорных сообщений и обеспечения двигательных реакций, гигантские аксоны оказались бы непригодными. Ясно, например, что в з,рительном нерве, где должно находиться больше миллиона параллельных аксонов для передачи зрительной информации просто не хватило бы места для большого числа гигантских волокон. Решением, найденным нервной системой позвоночных, явилось образование миелинизиро-ванного аксона, в котором кабельные потери сильно снижены благодаря миелиновой оболочке (130, с. 114). [c.207]



Смотреть главы в:

Нейробиология Т.2 -> Параллельные двигательные пути




ПОИСК







© 2025 chem21.info Реклама на сайте