Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Паровые (парокомпрессионные) холодильные машины

    Хотя цикл Карно является теоретическим, рассмотрение его позволяет сделать важные практические выводы. Рассматривая уравнение, можно заметить, что холодильный коэффициент зависит от температуры охлаждаемого объекта Т о и окружающей среды Г. При понижении Го и постоянной величине Г, холодильный коэффициент уменьшается. Уменьшение холодильного коэффициента происходит также при возрастании температуры окружающей среды при постоянной температуре Го. Холодильный коэффициент цикла Карно имеет наибольшее значение по сравнению с реальными циклами паровых холодильных машин и, следовательно, требует минимальной затраты работы, являясь идеальным обратным циклом. В действительном цикле температура рабочего вещества Го всегда ниже температуры охлаждаемого объекта на некоторую величину АГо (8—10°Q, и, наоборот, когда рабочее вещество вступает в теплообмен с окружающей средой, его температура бывает выше температуры среды на величину АГ (5—10°С). На рис. 9 пунктирными линиями условно показаны дополнительные перепады температур. Из диаграммы видно, что холодильный коэффициент цикла с учетом температурных напоров меньше холодильного, коэффициента обратного цикла Карно, так как возрастает площадь, определяющая величину затраченной работы (увеличивается Г, уменьшается Го). В реальных циклах можно отметить и ряд других потерь, которые приводят к уменьшению холодильного коэффициента. Эти потери рассматриваются ниже. Но все же, несмотря на меньшую эффективность реальных парокомпрессионных циклов по сравнению с идеальным циклом, они обеспечивают достаточно высокое значение холодильного коэффициента, лишь немного отличающегося от соответствующего значения его для обратного цикла Карно. Например, при = 30°С и Го = —15°С для аммиака е = 4,85, для фреона-12 е = 4,72, а для любого холодильного агента в обратном цикле Карно е = 5,74. [c.23]


    Установки для получения умеренного холода, наз. также холодильными машинами, подразделяются на воздушные и паровые, а последние - на компрессионные, абсорбционные, адсорбционные и пароэжекторные. Наиб, распространены парокомпрессионные, абсорбционные и пароэжекторные машины. [c.303]

    Описанный парокомпрессионный цикл одинаков и для теплового насоса и для холодильной машины. Его часто называют обратным циклом Ренкина или, менее точно, просто циклом Ренкина. В действительности цикл Ренкина относится к процессу в паровых турбинах при выработке электроэнергии. На Т—8 диаграмме он протекает по часовой стрелке, включая испарение и конденсацию. Подчеркнем два различия между циклом Ренкина и механическим парокомпрессионным. Первое состоит в направлении цикл Ренкина— это энергетический цикл, отдающий мощность при расширении пара в турбине. Второе различие в том, что в цикле Ренкина сжимается 100% жидкости. Действительно, обратимым по отношению к циклу Ренкина был бы цикл с расширительной машиной-, а не с необратимым расширением в дросселе. На практике, однако, разница не очень существенна. [c.19]

    ПАРОВЫЕ (ПАРОКОМПРЕССИОННЫЕ) ХОЛОДИЛЬНЫЕ МАШИНЫ [c.90]

    Особенностью пароэжекторных холодильных машин является то, что пары холодильного агента сжимаются в пароструйном эжекторе, причем рабочим паром последнего является пар самого холодильного агента только более высокого давления. Преимуществами пароэжекторной холодильной машины являются отсутствие громоздкого и дорогостоящего парового компрессора, возможность применения в качестве холодильного агента воды. В воздушных, парокомпрессионных и пароэжекторных холодильных машинах сжатие холодильного агента, необходимое для переноса тепла на более высокий температурный уровень, осуществляется при помощи компрессора. В абсорбционной же холодильной машине повышение давления рабочего вещества достигается термохимическим путем, для чего требуется затрата тепла при температуре, более высокой, чем температура окружающей среды. [c.21]

    Вспомним, например, турбодетандер Капицы, родившейся от "теплых паровой и водяной турбин (см. с. 277—279), или столь же "холодный регенератор Френкля (с. 274), происходящий от горячих регенераторов металлургических печей. Да и сама парокомпрессионная холодильная установка - это, по существу, паровая машина, пущенная "наоборот . [c.324]


    Пароэжекторные машины (рис. 8) работают с затратой тегиоты сжатие хладагента осуществляется паровым эжектором, а конденсация - перемешиванием с водой. Рабочий водяной пар под давлением 0,8-1,0 МПа подводится из парогенератора к соплу эжектора Эж, вде расширяется, создавая разряжение в испарителе ТИ, смешивается с отсасываемым из него паром и поступает в диффузор под давлением конденсации. В конденсаторе ТК водяной пар сжижается, конденсат частично подается в испаритель для восполнения потерь, а его осн. масса возвращается в парогенератор. При испарении в ТИ вода охлаждается, по закжнутому контуру поступает к холодильной камере ХК, подофевается и возвращается в испаритель. Для этих машин Т, достигает 283 К. Коэф. е , = 9д/9 р (9шр теплота, затрачиваемая на получение пара высокого давления), значительно ниже, чем для парокомпрессионных, а в нек-рых случаях и абсорбц. машин. [c.304]


Смотреть страницы где упоминается термин Паровые (парокомпрессионные) холодильные машины: [c.91]    [c.92]   
Смотреть главы в:

От твердой воды до жидкого гелия -> Паровые (парокомпрессионные) холодильные машины




ПОИСК





Смотрите так же термины и статьи:

Паровая холодильная машина

Паровые машины

Парокомпрессионные машины

Холодильная машина



© 2024 chem21.info Реклама на сайте