Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент полезного действия холодильных циклов

    Цикл Карно для идеального газа является идеальной, не осуществимой в практике схемой тепловой (холодильной) машины. В технической термодинамике рассматриваются другие циклы, более близкие к реальным процессам в тепловых машинах, и вычисляются коэффициенты полезного действия этих циклов. [c.46]

    Коэффициент полезного действия холодильного цикла [c.157]


    Коэффициент полезного действия цикла холодильной установки [c.36]

    Идеальная холодильная машина, как видно из рис. XVI-I, предполагает всасывание компрессором влажного пара и его сжатие в области X < I, где х — паросодержание. Очевидно, даже при достижении в конце сжатия состояния сухого насыщенного пара (х = I), т. е. в предельном варианте реализации обратного цикла Карно, компрессор будет все же всасывать влажные пары хладоагента. Такой процесс, однако, практически невыгоден, так как в результате соприкосновения с нагретыми стенками цилиндра компрессора частицы жидкости будут здесь испаряться без увеличения холодопроизводительности машины при одновременном уменьшении объемного коэффициента полезного действия компрессора. По этой причине компрессор действительной холодильной машины всасывает сухой насыщенный пар, осуществляя его сжатие в перегретой области (адиабата I—2 на рис. XVI-2, б), что составляет третье отличие от идеального рабочего цикла. Заметим, что сжатие паров в перегретой области является термодинамически невыгодным, поскольку на участке 2—3 или /О—// количество холода, приходящееся на единицу затрачиваемой работы, меньше, чем в области влажного пара. Однако небольшой перерасход работы практически перекрывается тем, что вся скрытая теплота хладоагента используется только в испарителе, и производительность компрессора увеличивается за счет возрастания объемного коэффициента полезного действия компрессора. [c.731]

    Цикл Карно равновесен, так как все составляющие его процессы равновесны. При проведении этого цикла в обратном направлении все характеризующие его величины имеют те же значения, что в прямом цикле, но обратные знаки . Теплота Q2 поглощается газом у тела с низшей температурой Гг и вместе с отрицательной работой А цикла передается телу с высшей температурой Г1. В сумме нагреватель получает теплоту Р1 = Р2+ - Таким образом, в обратном цикле Карно работа превращается в теплоту и одновременно теплота Q2 переносится от тела с низшей температурой к телу с высшей температурой. Обратный цикл Карно дает схему действия идеальной холодильной машины. Коэффициентом полезного действия обратного цикла Карно называется отношение затраченной работы к теплоте, отданной нагревателю, т. е. та же величина т], что для прямого цикла. [c.44]

    Подбирая объемы и г, всегда можно построить циклы с одинаковой площадью, т. е. независимо от допускаемого различия в коэффициентах полезного действия т] я ц удается выполнить условие Л==Р1—Рг—Q2=Л В результате этога оба цикла смогут замкнуться одновременно, и после одного оборота обоих циклов в окружающей среде произойдут только переносы теплоты между телами с температурами Г1 и Гг. Если коэффициенты полезного действия машин не равны, то машину с большим коэффициентом полезного действия можно выбрать в качестве тепловой, а другую, работающую на идеальном газе, сделать холодильной. Если допущение о том, что коэффициент полезного действия первой машины больше, чем второй, является правильным, то [c.25]


    В обычных условиях работы абсорбционной машины цикл с превышением температуры удается осуществить сравнительно редко. За счет обратной подачи в абсорбере возможен сравнительно небольшой подогрев раствора. Вследствие этого коэффициент полезного действия совмещенного цикла теплового двигателя абсорбционной машины, как правило, очень низок. Если в цикле, изображенном на рис. 254,а, повысить давление р или понизить давление р , то возможность осуществления регенеративного цикла с превышением температур уменьшится, и коэффициент полезного действия цикла начнет падать. Давления р и Рд зависят от температур конденсации и кипения в испарителе в холодильном цикле. [c.478]

    Цикл, обратный рассмотренному, называется холодильным в процессе его работы тепло от холодного тела с температурой Т2 переходит к горячему телу с температурой Тх. При этом над системой выполняется работа со стороны внешних сил (например, за счет энергии электрического тока). Холодильным коэффициентом полезного действия называется величина [c.25]

    Продолжительность работы холодильной установки на полную мощность зависит от продолжительности заполнения резервуара сжиженным газом. При одновременном поступлении сжиженных газов в цистернах по железной дороге и продолжительности слива цистерн в течение 2 ч холодильная установка будет работать на всю мощность также в течение 2 ч, т. е. с незначительным коэффициентом полезного действия. В остальное время суток нужна холодильная установка для компенсации теплопотерь при цикле хранения. [c.100]

    Известно 164, 98], что современные холодильные циклы имеют термодинамический коэффициент полезного действия для температурного уровня 80° К около 0,3 и для уровня 20° К около 0.15. Если ввести эти значения, то получим х = 0,7 o — х = 0,3. [c.78]

    Коэффициент полезного действия цикла (холодильный коэффициент) при изотермическом сжатии для идеального случая [c.98]

    Приведенный расчет теоретического цикла холодильной машины не учитывает действительных потерь, которые могут достигать значительной величины это заставляет вводить в расчет коэффициенты полезного действия. [c.12]

    Допустим, что соотношение (1,24), а вместе с ним равенство (1,23) оказались не универсальными, т. е. нашлось вещество, которое в обратимом цикле Карно имеет другой коэффициент полезного действия, отличный от т) для идеального газа. Рассмотрим тогда работу двух машин, в одной из которых используется идеальный газ, а в другой — вещество с произвольными свойствами. Пусть машины используют общие источники теплоты с температурами и Гг. В одной из них можно получать работу А за счет поглощения теплоты О, от теплоотдатчика при Т=Т1 п отдачи теплоприемнику теплоты С 2 при Г=Гг. Это позволяет совершать работу Л = Р1—С г- Во второй машине можно за счет этой работы осуществить холодильный цикл , т. е. провести цикл в обратном направлении и взять от тела с низкой температурой Гг некоторое количество теплоты Сг, отдавая теплоту при более высокой температуре Т Т. Величины, относящиеся ко второй машине, отмечены везде штрихом ( ). [c.25]

    Таким холодильным циклом, как мы видели выше, является цикл высокого давления с детандером, который и применяется обычно для получения жидкого кислорода. Кроме того, особенно в крупных установках, для получения жидкого кислорода можно также использовать холодильный цикл низкого давления с турбодетандером, обладающим высоким коэффициентом полезного действия. [c.34]

    В ряде случаев при изучении обратного кругового процесса холодильный коэффициент оказывается важным критерием. При выяснении роли усовершенствования холодильной машины, введении того или иного процесса в холодильный цикл пользуются только холодильным коэффициентом. Однако полная эффективность процесса получения холода зависит не только от холодильной машины, но и от связанного с ней двигателя. Выражения (I—21, 21а) вскрывают эту важнейшую особенность процесса получения искусственного холода. Можно иметь очень совершенную холодильную машину и мало совершенный двигатель, а в результате общая эффективность производства холода будет невелика, так как эта величина определяется произведением коэффициента полезного действия двигателя на холодильный коэффициент. [c.24]

    Здесь и с—термический коэффициент полезного действия и холодильный коэффициент действительных термодинамических циклов системы. [c.24]

    Коэффициент полезного действия расширителя также уменьшается с понижением температуры, однако относительная экономичность воздушной холодильной машины при этом растет. С понижением температуры после расширителя холодильный коэффициент действительного цикла вначале возрастает, а затем вновь начинает падать. Это объясняется тем, что убывание холодильного коэффициента теоретического цикла при понижении температуры T после расширителя приводит также и к уменьшению отношения а работы расширителя к работе цикла, что в свою очередь влечет за собой сокращение действительных потерь. Уменьшение же действительных потерь приводит к относительному увеличению холодильного коэффициента действительного цикла. [c.423]


    Термодинамическая эффективность рассмотренного цикла теплового двигателя определяется его термическим коэффициентом полезного действия. Применение его целесообразно при греющем источнике переменной температуры (газ, горячая вода). При обогреве котла путем непосредственного сжигания топлива требуется поддерживать внутри его высокие давление и температуру. Однако если учесть, что критическая точка водоаммиачного раствора ниже, чем воды, и при температуре аммиака выще 250° возможно его разложение, то по своей эффективности водоаммиачный двигатель в этих условиях уступает двигателю с парами воды. Однако возможность использования такого двигателя при утилизации тепла отходящих газов, а также большое его значение для теории холодильных циклов вызывает необходимость подробного его рассмотрения. [c.461]

    Введем теперь потери. Пусть все потери прямого цикла выражаются относительным коэффициентом полезного действия обратного — т °, а потери на передачу энергии от двигателя к холодильной мащине —т) . Тогда тепловой коэффициент системы  [c.476]

    Следовательно, эффективность работы абсорбционной машины определяется коэффициентом полезного действия и холодильным коэффициентом ее сов-меш,енных циклов. [c.478]

    Сравнение систем циклов водоаммиачного раствора и водяного парового двигателя с холодильной машиной. На рис. 255,6 изображены циклы Карно двигателя с водяным паром и холодильной машины, работающей на однокомпонентном теле (аммиак, фреоны и т. д.). При непосредственном сжигании топлива для получения работы необходимо высокое давление внутри котла, а также значительный перегрев пара, благодаря чему термический коэффициент полезного действия такого двигателя значительно выше, чем у двигателя, рабочим телом которого является раствор. [c.480]

    Термодинамическая эффективность такой системы совмещенных циклов определяется произведением коэффициента полезного действия на холодильный коэффициент ее совмещенных циклов. [c.481]

    При неизменных значениях коэффициента полезного действия компреосора и детандера эффективность холодильного цикла возрастает с увеличением начального давления, поэтому расход энергии при высоком давлении меньше. [c.3]

    Несмотря на то что при сжатии в-компрессоре влажного пара холодильный цикл приближается к циклу Карно, а сжатие сухого пара теоретически нерационально вследствие увеличения расхода энергии на перегрев пара, практически более выгодным оказывается сухой ход компрессора с перегревом сжатого пара. Пар засасывается в сухом насыщенном состоянии (точка Г на рис. ХУП-7, а и б) и адиабатически сжимается до заданного давления (точка 2 ). При этом уменьшаются значительные потери холода, обусловленные интенсивным теплообменом между влажным паром и стенками цилиндра компрессора. Кроме того, вследствие интенсивного теплообмена с окружающей средой при влажном ходе будет происходить испарение хладоагента в цилиндре компрессора, что приведет к уменьшению объемного коэффициента полезного действия и коэффициента подачи компрессора и, следовательно, холодопроизводительность цикла будет более низкой. [c.696]

    Напомним, что КПД — коэффициент полезного действия любого устройства преобразования энергии - это отношение действительного энергетического эффекта его работы к тому, который был бы получен, если бы оно было идеальным. Для тепловых и холодильных установок идеальным образцом служит, цикл Карно (см. "первый научный комментарий , с. 47). [c.324]

    Продолжительное время жидкий воздух получали в установках, работаюнщх по описанному циклу, который в технике носит название холодильного цикла с дросселированием. Хотя этот цикл прост по своему устройству, но он малоэкономичен, так как только 5 процентов от всего пропускаемого через систему воздуха переходит в жидкое состояние, остальные 95 процентов газа, охладив идущий навстречу сжатый воздух, уходят из теплообменника в атмосферу. Такой низкий коэффициент полезного действия холодильного цикла с дросселированием объясняется тем, что он обладает малой производительностью холода, то есть расход энергии на сжатие газа до высокого давления большой, а снижение температуры при дроссельном расширении газа невелико. [c.85]

    На основании выражения (XVH,1) можно показать, что с понижением температуры охлаждения T затрачиваемая работа резко возрастает и соответственнно значительно увеличивается стоимость получения холода. Кроме того, с понижением температуры охлаждения вследствие уменьшения [согласно уравнению (XVH,3)1 значения холодильного коэффициента реального цикла е, будет уменьшаться термодинамич еский коэффициент полезного действия т] любого реального цикла, равный отношению холодильного коэффициента г реального цикла к холодильному коэффициенту цикла Карно  [c.648]

    Главной задачей термодинамики XIX в. было создание точной и полной теории действия тепловых машин, такой теории, которая могла бы служить основой для проектирования паровых поршневых машин, двигателей внутреннего сгорания, паровых турбин, холодильных машин и т. д. и которая указывала бы научно обоснованные пути усовершенствования этих машин. В связи с этим детальное развитие в XIX в. получила термодинамика газов и паров. Основным методом термодинамики XIX в. был метод круговых про-дессов. Главным содержанием термодинамики XIX в. было 1) исследование различных циклов с точки зрения их коэффициента полезного действия 2) изучение свойств газов и паров 3) разработка и создание термодинамических диаграмм, столь важных для практических расчетов в области теплотехники. С этим направлением исследований связаны имена самих основателей термодинамики Сади Карно, Клапейрона, Роберта Майера, Томсона, Клаузиуса и затем Ренкина, Гирна, Цейнера, Линде и в XX в.—Молье, Шюле, Календера. [c.7]

    Работа А, затраченная на сжатие газа, значительно больше работы, получаемой при рас1 ирении этого газа в детандере. Отношение количества тепла й, отнятого от охлаждаемого тела, к затраченной при этом работе А, называется коэффициентом полезного действия цикла е = Для холодильной машины, работающей по циклу Карно, = [c.49]

    В установках производительностью 3500—4000 м 1ч кислорода и более удельные холодопотери снижаются до 1 —1,5 ккал (4,2— 6,3 кдж) на 1 кг перерабатываемого воздуха. В этом случае становится возможным отказаться от применения в холодильном цикле воздуха высокого давления и для покрытия потерь холода использовать только воздух низкого давления. Рабочее давление цикла в установках низкого давления (/ и = 5—6 кгс1см ) определяется необходимостью создания температурного напора в конденсаторе аппарата двукратной ректификации. Холод в крупных установках низкого давления получается путем расширения части воздуха низкого давления в турбодетандере, обладающем высоким коэффициентом полезного действия. Применяют два турбодетандера при пуске установки оба работают параллельно, а при установившемся режиме работает один, второй же является резервным. [c.186]

    В установках производительностью 3500—4000 м 1ч кислорода и более удельные холодопотери снижаются до 1—1,5 /скал (4,2— 6,3 кдж) на 1 кг перерабатываемого воздуха. В этом случае становится возможным отказаться от применения в холодильном цикле воздуха высокого давления и для покрытия потерь холода использовать только воздух низкого давления. Величина низкого давления (р =5—6 кгс1см ) определяется условиями процесса разделения воздуха в аппарате двукратной ректификации. Холод в крупных установках низкого давления получается путем расширения части воздуха низкого давления в турбодетапдере, обладающем высоким коэффициентом полезного действия. Применяют два турбодетаидера при пуске установки оба работают параллельно, а в установившемся режиме работает один, второй же является резервным. Установки низкого давления для получения газообразного технологического кислорода имеют производительность 3500—6000 7000—15 ООО и 25 000—35 ООО кислорода. Возможны и более крупные установки производительностью порядка 60 ООО—75 ООО м 1ч кислорода. [c.209]

    Из выражения холодильного коэффициента действительного цикла следует, что его величина зависит от коэффициентов полезного действия расширителя и компрессора. В рассмотренном примере, при очень высоких значениях коэффициентов полезного действия расширителя Т1аар=0,85 и компрессора Цадк=0,9, степень обратимости действительного цикла меняется от 16,2% до 47%. Если же при температуре /4=—88,5° (наиболее благоприятной) значение коэффициента полезного действия расширителя т адр снизится до 0,65, а -Цадк компрессора до 0,75, то холодильный коэффициент действительного цикла уменьшится от значения 0,785 до 0,32, а степень обратимости теоретического цикла от 47 до 19%. [c.423]


Смотреть страницы где упоминается термин Коэффициент полезного действия холодильных циклов: [c.55]    [c.77]    [c.5]    [c.5]    [c.209]    [c.8]   
Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.756 ]

Справочник по физико-техническим основам глубокого охлаждения (1963) -- [ c.65 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент полезного действия



© 2025 chem21.info Реклама на сайте