Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термоэлектрическое охлаждение (эффект Пельтье)

    Термоэлектрическое охлаждение основано на использовании эффекта Пельтье при прохождении постоянного тока через два спая разных металлов (рис. 1У-48) или полупроводников, при противоположной последовательности металлов в спаях в одном из них происходит поглощение тепла Со, а в другом выделение Q. В зависимости от условий конвекции и теплопроводности в спаях возникают температуры [c.369]


    Термоэлектрическое охлаждение (эффект Пельтье) [c.18]

    Термоэлектрическое охлаждение основано на использовании эффекта Пельтье, сущность которого заключается в выделении или поглощении тепла на контакте двух различных проводников в зависимости от направления электрического тока. При этом роль рабочего тела выполняют электроны в батареях из термоэлементов, для которых применяют полупроводники из сплавов некоторых тяжелых металлов германия, теллура, селена и др. [c.19]

    Холодильные установки могут работать на принципах испарения некоторых сжиженных газов (паровые) или расширения газов (газовые), эффекта Пельтье (термоэлектрическое охлаждение), эффекта Ранка (вихревое охлаждение). [c.140]

    Охлаждение получается в результате того или иного физического явления, сопровождаемого процессом отнятия, перехода тепла. Наиболее известными процессами этого рода будут явления изменения агрегатного состояния тела (таяние, сублимация, растворение и испарение), производство внешней работы за счет внутренней энергии расширяющегося тела (адиабатное и политропное расширение газа), процесс дросселирования (эффект Джоуля-Томсона), термоэлектрический процесс (эффект Пельтье), магнитные явления (адиабатное выключение магнитного поля изотермически намагниченного парамагнитного тела) и др. [c.5]

    Термоэлектрическое охлаждение (эффект Пельтье) (рис. 5.6) обусловлено поглощением теплоты на одном спае полупроводникового элемента и выделением его на другом при прохождении постоянного тока через элемент. При поддержании температуры горячего спая на определенном уровне можно получить необходимую температуру холодного спая. Многокаскадная батарея (горячий спай одной батареи примыкает к холодному спаю другой и т. д.) позволяет значительно снизить температуру холодного спая каскада, непосредственно примыкающего к захолажи-ваемому прибору. [c.280]

    Термоэлектрическое охлаждение основано на использовании эффекта Пельтье при прохождении постоянного тока через два спая разных металлов (рис. 1У-48) или полупроводников, при противоположной последовательности металлов в спаях в одном из них происходит поглощение тепла Ро, а в другом выделение С. В зависимости от условий конвекции и теплопроводности в спаях возникают температуры Го и Г. Металлы, образующие систему, должны иметь разные потенциалы (отсюда и обозначения -1-, —). Соединяются эти металлы медными проводами, что облегчает соединение системы с камерой (охлаждения), а также получение и отдачу тепла (Ро и Р). Такая система удобна для охлаждения. Холодильный к. п. д. установки такого типа несколько ниже, чем компрессионных установок. [c.369]


    Рассмотрим кратко физическую картину нестационарного режима термоэлектрического охлаждения. Известно, что эффект Пельтье имеет место на контакте разнородных проводников тока, т. е. это эффект поверхности . Эффект Джоуля - это тепловой эффект в объеме проводника тока. Когда в тепловом балансе холодного спая термоэлемента мы записываем половину теплоты Джоуля, поступающей на спай, как отрицательный эффект мы имеем в виду достаточно длительное (в электронном масштабе) время, за которое порции джоуле-вой теплоты из центральных областей ветви термоэлемента достигнут холодного спая. В течение этого времени эффект Пельтье сохраняет свое холодное преимущество перед эффектом Джоуля. И если в. этот момент времени через ветви термоэлемента пропустить ток выше /щах (/опт), ТО можст возникнуть эффект кратковременного охлаждения до уровня температур ниже максимально достигаемых в режиме / их- Более того, в конце этого временного промежутка можно дать еще большее значение тока и получить (уже на совсем короткое время) еще один пик холода . Схематически такой режим представлен на рис. 11. [c.36]

    Термоэлектрический эффект. При пропускании электрического тока по цепи, состоящей из двух разных проводников, спаянных друг с другом, один из спаев охлаждается, а другой нагревается (эф кт Пельтье). В случае применения вместо обычных металлов полупроводников термоэлектродвижущая сила которых во много раз превышает соответствующие значения для металлов, открывается перспектива использования термоэлектрического охлаждения для получения низких температур. Для этой цели должны быть созданы батареи эффективных термоэлементов, изготовленных из полупроводников. [c.654]

    Возможность получения холода путем непосредственной затраты электрической энергии была доказана еще в 1834 г, французским физиком Пельтье, который установил, что при прохождении тока в замкнутой цепи, спаянной из двух разных металлов (термопара), один спай нагревается, а другой охлаждается. Чтобы холодный спай постоянно имел низкую температуру и был источником охлаждения, теплый спай необходимо охлаждать, иначе теплота от него будет передаваться путем теплопроводности холодному спаю. Более ста лет эффект Пельтье не находил практического применения. Только в 1949 г. благодаря работам советских ученых во главе с академиком А. Ф. Иоффе термоэлектрическое охлаждение стали применять в технике. [c.24]

    Термомеханический эффект в гелии II. Так называемый термомеханический эффект в гелии II заключается, как известно, в том, что при вытекании гелия из сосуда через тонкий капилляр в сосуде наблюдается охлаждение. Само по себе наличие термомеханического эффекта свойственно не одному только гелию аномальным у гелия II является только большая величина эффекта. Термомеханический эффект в обычных жидкостях представляет собой необратимое явление типа термоэлектрического эффекта Пельтье. [c.405]

    На современном уровне техники охлаждение какой-либо среды или тела может быть осуществлено на основе использования ряда принципов и явлений. Для получения охлаждающего действия используются фазовые превращения веществ (плавление, кипение, растворение солей), расширение газообразных веществ, дросселирование (эффект Джоуля-Томсона), вихревой эффект, термоэлектрический эффект (эффект Пельтье), размагничивание твердого тела и другие явления, [c.9]

    Термоэлектрическое охлаждение [48, 222—224]. В основе метода лежит эффект Пельтье (открытый в 1834 г.), заключающийся в том, что при пропускании тока по цепи, состоящей из двух различных проводников, в точках контакта выделяется или поглощается (З2"  [c.70]

    Любой природный процесс, сопровождающийся поглощением тепла, может быть использован для охлаждения. Практически охлаждающий эффект получают с помощью применения следующих физических процессов рабочих тел фазовых превращений, сопровождающихся поглощением тепла (плавление, парообразование, растворение соли) десорбции газов, расширения сжатого газа (с получением внешней работы) дросселирования (эффект Джоуля-Томсона) вихревого эффекта-, размагничивания твердого тела (магнитно-калорический эффект) термоэлектрического эффекта (эффект Пельтье). [c.5]

    В течение последнего дес5ггилетия среднегодовой прирост мирового производства термоэлектрических охлаждающих модулей составляет 15-25 %. Столь высокие и устойчивые темпы роста свойственны разве что таким высокотехнологичным продуктам, как компьютерная техника и программное обеспечение. Несмотря на то, что со времени открытия эффекта термоэлектрического охлаждения (эффекта Пельтье) прошло около 170 лет, его практическое использование стало возможным лишь в последние десятилетия. [c.117]


    В современных гигрометрах точки росы для охлаждения зеркальца црименяют термоэлектрический способ, основанный на эффекте Пельтье. В этом случае плавное охлаждение и подогрев зеркальца легко осуществляются посредством изменения силы и направления тока, проходящего через полупроводниковый элемент. Автоматические гигрометры, естественно, повышают точность результатов, заметно сокращают время анализа и расход газа нри низких содержаниях воды. Последнее связано с тем, что визуальный способ регистрации требует накопления значительного количества жидкости. Г.чавное же достоинство автоматических гигрометров — это исключение утомительной процедуры наблюдения за состоянием поверхности зеркальца. [c.141]


Смотреть страницы где упоминается термин Термоэлектрическое охлаждение (эффект Пельтье): [c.74]    [c.84]    [c.130]    [c.101]   
Смотреть главы в:

Холодильные машины и аппараты Изд.2 -> Термоэлектрическое охлаждение (эффект Пельтье)




ПОИСК





Смотрите так же термины и статьи:

Пельтье эффект



© 2025 chem21.info Реклама на сайте