Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрирование следов элементов физическими методами

    Мицуи ке A. Разделение и предварительное концентрирование. В кн. Физические методы анализа следов элементов , М., Мир , 1967, 83 с. [c.208]

    Концентрирование следов элементов физическими методами [c.48]

    Концентрирование следов элементов дистилляцией и переводом в газообразное состояние. Подобно физическим методам обогащения твердых проб (разд. 2.2.7 и 2.3.6), компоненты растворов также легко можно разделить дистилляцией или переводом в газ, если определяемый элемент или мешающий компонент превратить в пар или газ. Этот способ разделения может, однако, применяться только для относительно небольшого числа элементов. [c.71]


    Концентрирование следов элементов методом соосаждения основано на том, что микроколичества определяемого элемента захватываются осадком — коллектором (т. е. собирателем), образующимся в процессе осаждения из предварительно добавленных реактивов. При этом для осаждения обычно применяют такой реактив, который образует с определяемым элементом малорастворимое соединение. Таким путем удается извлекать вещества, концентрация которых в растворе значительно меньше концентрации их насыщенного раствора, т. е. увлекать в осадок соединение с произведением концентрации ионов, меньшим величины произведения растворимости, и количества которых так малы, что если бы эти вещества и могли образовать в данных условиях собственный осадок, он потерялся бы на стенках сосуда. При соосаждении коллектор может вступать с осаждаемыми элементами в многообразные взаимодействия, начиная от образования химического соединения, например в результате ионного обмена между коллектором и осаждаемым веществом, и кончая процессами физического или просто механического характера. В ряде случаев соосаждение основано на образовании смешанных кристаллов. Например, при соосаждении ионов свинца с сульфатом стронция образуются смешанные кристаллы, так как сульфаты этих элементов изоморфны. Если прн соосаждении изоморфных веществ достигается равновесие, то можно определить коэффициент распределения К (стр. 295), который в данном случае может быть выражен отношением произведений растворимости двух компонентов  [c.346]

    Методы определения веществ. При анализе следовых количеств веществ охотно прибегают к физическим методам анализа, которые характеризуются большой чувствительностью (табл. 8.10). Для обнаружения следовых количеств тяжелых металлов перспективным общим методом является спектрографический анализ (разд. 5.2) или специальные варианты масс-спектроскопии [19]. Остальные методы позволяют определить содержание только одного элемента (или отдельных элементов). Выбор метода следует проводить в зависимости от решаемой задачи. Метод инверсионной вольтамперометрии (разд. 4) сочетает метод определения с методом концентрирования, что дает особо высокую чувствительность определения. [c.401]

    Применение избирательных органических реагентов и использование избирательных схем фотометрического определения элементов (здесь мы рассматриваем в основном редкие элементы) составит серьезную конкуренцию физическим и физико-химическим методам, видимо, еще по крайней мере на протяжении 20—30 лет. Преимущества фотометрических методов, не требующих сложной аппаратуры, очевидны чувствительность методов достаточно высока (молярные коэффициенты погашения для лучших реагентов составляют 50—150 тыс.), что позволяет определять от 100 до 0,01 мкг абсолютных количеств вещества или до 10" % элемента в объекте без отделения основы, до 10 %—применяя простые, экспрессные схемы отделения, и до 10 —10 % —с предварительным концентрированием определяемого элемента. Сложные схемы подготовки анализируемого материала, не пригодные для использования их в автоматических анализаторах, вряд ли найдут широкое применение. При содержании элемента менее 10" % применение обычных фотометрических методов оправдывается только в редких случаях. Следует, однако, отметить, что здесь мы совершенно не рассматриваем другие химические методы анализа, которые также связаны с изменением окраски растворов (реакции, основанные на каталитических явлениях, ферментный анализ и др.), которые, возможно, существенно изменят наши представления о соотношении между собою различных видов анализа. [c.124]


    Общей теме разделения и предварительного концентрирования проб предшествуют главы с детальным описанием многих физических методов определения следов элементов. Рассмотрены различные оптические, ядерные, электрохимические и другие методы, которые часто применяют для определения следов при этом основной акцент делается на модификации и усовершенствования этих методов для определения элементов на уровне 10" %. [c.7]

    Большинство предложенных методов предназначено для определения малых количеств примесей в металлическом кадмии, его сульфиде и некоторых других соединениях высокой чистоты и для нахождения различных его форм в чистых веществах. Меньшее число методов описано для анализа технических продуктов — гальванических ванн кадмирования, сырья для стекольной промышленности, пигментов, сплавов и др. Первая группа методов включает определение следующих 36 элементов Ag, А1, Аз, Аи, Ва, В1,Вг, Са, С1, Со, Сг, Си, Ре, Оа, Ое, Hg, I, 1п, К, Ы, Ме, Мп, Мо, ]Ча, N1, РЬ, 8, 8Ь, Зе, 8п, 8г, Те, Т1, Т1, V, 2п для их концентрирования или отделения от основной массы кадмия используют соосаждение с различными коллекторами, экстракцию органическими растворителями, отгонку летучих соединений, ионный обмен, в спектральных методах — и физическое обогащение. Определение этих элементов выполняют преимущественно эмиссионной спектрографией и абсорбционными методами (визуальная колориметрия, фотоколориметрия и спектрофотометрия). В меньшей степени применяют полярографию и еще реже — другие методы анализа. [c.185]

    Следует отметить, некоторую условность де 1ения методов на химические, физико-химические и физические. Существуют также другие классификации. В последние годы иолучили развитие так называемые комбинированные методы анализа, к которым можно отнести, например, химико-сиектральный, экстракционно-атомно-абсорбционный, экстракционно-фотометрический методы. Эти методы сочетают предварительную химическую подготовку пробы (разделение, концентрирование) с последующим определением содержания элементов физическими или физико-хи-мическими методами. [c.25]

    Активационный анализ (АА) относится к основным ядерно-физическим методам обнаружения и определения содержания элементов в различных природных и техногенных материалах и объектах окружающей среды [1—9]. Метод базируется на фундаментальных понятиях и данных о структуре атомных ядер, сечениях ядерных реакций, схемах и вероятностях распада радионуклидов, энергиях излучения, а также на современных способах разделения и предварительного концентрирования микроэлементов. Широкое распространение АА получил благодаря таким преимуществам перед другими методами, как низкие пределы обнаружения элементов (10 -10 г), экспрессность и воспроизводимость анализа, возможность неразрушающего одновременного определения в пробе 20 и более элементов [5, 7-13]. Применение специальных химических методик и аппаратурных приемов позволяет определять фоновое содержание металлов в приземном слое атмосферы [3], следовые количества примесей в биологических объектах, особо чистых веществах [6,91 и устанавливать химическую форму элементов в исследуемьк пробах [10]. Большое значение имеет возможность проведения анализа в диапазоне массы образцов от нескольких микрограммов (важно для труднодоступных образцов, например, метеоритов или лунного грунта) до нескольких сотен граммов. Следует отметить, что относительная погрешность определения содержания элементов в пробах активационным методом не выходит за пределы 10%, а воспроизводимость составляет 5-15% и может быть доведена до 0,1-0,5% при серийных анализах [2]. [c.3]

    Методом распределительной хроматографии на колонке осуществляется не только быстрое разделение веществ с 1близкими химическими свойствами, но и концентрирование элементов. Из многих химических и физических методов обогащения наибольшими возможностями обладает распределительная хроматография на колонке с обращенной фазой. Следует отметить, что она имеет ряд преимуществ перед экстракцией 1) за счет динамического проведения опыта удается получить разделение близких по свойствам элементов без многократного повторения процесса экстракции 2) аппаратурное оформление метода гораздо проще, чем экстракционного 3) используется незначительное количество экстрагента. [c.61]

    Преимущества этого способа связаны со следующими его особенностями. Прежде всего раствор — это однородная система, весьма удобная для непосредственного анализа спектральным или любым другим аналитическим методом. При спектральном анализе растворов исключаются ошибки, связанные с влиянием структуры, молекулярного состава и неравномерным распределением элементов в пробе. Устраняется фракционирование, наблюдаемое почти всегда при анализе твердых проб. Значительно уменьшается, а во многих случаях полностью подавляется влияние третьих элементов и матрицы на результаты анализа. Весьма просто решается проблема приготовления эталонов-растворов для анализа самых разнообразных и сложных по химическому составу проб. Методы спектрального анализа растворов позволяют определять малые концентрации элементов в малых количествах растворов. Удачно сочетаются предварительная химическая обработка образцов и собственно спектральный анализ — ведь растворы получаются в результате хидш-ческой подготовки проб, в частности (в химико-спектральных методах), после концентрирования элементов экстракцией и другими способами. Это пример того, как в физических методах анализа в той или иной степени участвуют химические процессы (Алимарин [1]). [c.29]



Смотреть главы в:

Эмиссионный спектральный анализ Том 1 -> Концентрирование следов элементов физическими методами


Эмиссионный спектральный анализ Том 2 (1982) -- [ c.31 , c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Методы концентрирования

Методы физические

след

след н след



© 2025 chem21.info Реклама на сайте