Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитные явления

    Многие магнитные явления представляют интерес для химии. К наиболее известным из них относятся магнитная восприимчивость и связанные с ней явления, а также различные типы магнитного резонанса. Магнитная восприимчивость является объемным свойством вещества. Она, а также такое молекулярное свойство, как магнитный момент, характеризуют взаимодействие вещества с магнитным полем. Существуют два типа магнитной восприимчивости диамагнитная и парамагнитная (частные случаи последней — ферромагнетизм и антиферромагнетизм). Вещество, обладающее диамагнитными свойствами, выталкивается из магнитного поля. Это слабый эффект, который возникает при движении электрических зарядов в системе. Вещество с парамагнитными свойствами втягивается в магнитное поле. Этот эффект зависит от наличия магнитного момента у атомов или молекул вещества. В свою очередь магнитный момент атома или молекулы обусловлен главным образом наличием собственных магнитных моментов у элементарных частиц, входящих в состав системы (т. е. у электронов и ядер), и их взаимодействиями. Существуют также орбитальные вклады в атомные и молекулярные магнитные моменты, но обычно эти вклады очень малы. [c.351]


    Обе книги могут быть полезными для преподавания предметов Математика и Физика , так как выделяют те разделы этих предметов, которые важны для химиков. Так, кроме дифференциального и интегрального исчисления химику, активно использующему физические методы в своей работе, необходимы разделы линейной алгебры, теории групп и интегральных преобразований. Для решения обратных задач методов особое значение имеют вычислительные методы. С точки зрения преподавания физики важно уделить внимание вращательному движению, магнитным явлениям и, конечно, квантовой механике, ее приближенным методам решения уравнения Шредингера, особенно методу теории возмущений. Некоторые задачи физического практикума также могут ориентироваться на дальнейшее использование в практике физических методов исследования в химии. [c.264]

    При ответе на первый вопрос необходимо учесть, что процессы химической технологии обычно не могут быть описаны с позиций электрических и магнитных явлений или с позиций теории поверхностных явлений. Кроме того, в большинстве случаев нет необходимости в данных о потенциальной и кинетической энергии потоков массы веществ. Поэтому в дальнейшем описание элемента процесса в технологической схеме процесса будет считаться полным, если в месте входа и выхода из элемента процесса для каждой фазы будет приведено /с + 2 данных (потоки компонентов, теплоты, импульса ). [c.33]

    В этой работе авторы поставили перед собой задачу построения элементов интеллектуальной системы, позволяющей преодолеть смысловой барьер между пользователем ЭВМ (химио-технологом, т. е. специалистом экстра-класса в своей узкой области) и матема-тиком-программистом. Проблема состояла в том, как при моделировании процесса на ЭВМ сохранить первичную, наиболее ценную содержательную физико-химическую информацию о процессе, которой обладает специалист в своей области, и как с наименьшими потерями этой информации оперативно преобразовать ее в форму строгих количественных соотношений. В работе [9] была сделана попытка создать своеобразный смысловой транслятор, облегчающий исследователю переводить его понятия о физикохимической сущности процессов в форму строгих математических описаний. Этот смысловой транслятор основан на диаграммной технике, позволяющей любое физическое, химическое, механическое, электрическое, магнитное явление и их произвольное сочетание представлять в виде соответствующего диаграммного образа, несущего в себе строгий математический смысл. Построенная на этой основе, реализованная на ЭВМ и действующая в настоящее время система формализации знаний позволяет 1) предоставить возможность исследователю-пользователю формулировать описание процесса не в форме точных математических постановок, [c.225]


    Теория Бора не в состоянии была объяснить и порядок распределения нескольких электронов по орбитам. За пределами теоретического объяснения оставался ряд важных оптических и магнитных явлений. Сложная структура спектра многоэлектронных атомов элементов требовала более глубокого научного объяснения. [c.55]

    В общей термодинамике излагаются теоретические основы термодинамики, ее законы и их приложение преимущественно к физическим явлениям (к свойствам твердых, жидких и газообразных тел, к электрическим и магнитным явлениям, излучению и т. д.). [c.12]

    Волновая теория. Если два луча от одного и того же источника света встречаются в одной точке пространства, то происходит интерференция света, т. е. взаимное усиление или ослабление интенсивности лучей. При прохождении света через небольшие отверстия наблюдается его д и ф р а к ц и я, т. е. отклонение света от первоначального направления в одной и той же однородной среде, например в воздухе. Интерференция и дифракция типичны для волновых процессов. Волны, распространяющиеся на поверхности воды, позволяют легко увидеть эти явления. Была также установлена тесная связь света с электрическими и магнитными явлениями. Поэтому в прошлом веке утвердилась волновая теория, согласно которой свет — это электромагнитные волны. Они непрерывно излучаются нагретым [c.14]

    Наличие у ядер спина, не равного нулю, приводит к возникновению магнитного момента. Вращение заряженной частицы со спином / можно, в соответствии с классическим представлением о природе магнитных явлений, представить как круговой ток, который -создает магнитный момент  [c.254]

    Классическая теория не может дать последовательного объяснения магнитных явлений как результата движения электрических зарядов. Существование молекулярных токов неизбежно требует признания стабильности движения электронов в атомах (молекулах), чуждой принципам классической физики. Неверным является также допущение о возможности любых ориентаций [c.299]

    Рассмотрение взаимодействия электрических зарядов и их магнитных явлений убеждает нас в органическом единстве электрического и магнитного полей. Поэтому принято, что энергия переносится электромагнитным полем и рассмотрение электрического и магнитного полей каждого раздельно имеет лишь относительный смысл. В электромагнитном поле энергия сосредоточена то в электрическом поле, то в магнитном, аналогично тому как при колебании маятника, энергия которого перераспределяется между кинетической и потенциальной. Поэтому энергия частиц связана с частотой волны и постоянной Планка, характеризующей импульс частицы и волновой вектор, а, как известно, волна обладает корпускулярными свойствами. [c.45]

    Мы начнем эту главу с обсуждения магнитной восприимчивости, что позволит связать указанные магнитные явления с фундаментальными магнитными свойствами вещества. [c.495]

    Мы не рассматриваем здесь многочисленных и разнообразных физических методов анализа, основанных на наблюдении излучения или поглощения энергии, магнитных явлений, радиоактивности и т. п. Эти методы относятся к специальной области анализа и, как было сказано, находят широкое применение при обнаружении весьма малых количеств вещества и особенно редких элементов. [c.16]

    В основу магнитного метода дефектоскопии положено использование магнитных явлений. Магнетизм - универсальное свойство материи, так как все вещества в природе в итоге состоят из элементарных частиц, обладающих магнитными свойствами. Поэтому магнитные явления обнаруживаются во всем окружающем мире - от микрочастиц до космических объектов. [c.229]

    В литературе, посвященной магнитным явлениям, пользуются также термином время корреляции, чтобы отличать его от времен магнитной релаксации Гь Гг и др. [c.258]

    Глава 17 МАГНИТНЫЕ ЯВЛЕНИЯ [c.351]

    Вклады в энергию системы, обусловленные пространственными функциями, т. е. те члены гамильтониана, обсуждению которых были посвящены предыдущие главы, являются постоянными. Теперь для упрощения дела мы можем просто пренебречь ими, рассматривая их как нулевой уровень отсчета в интересующей нас энергетической шкале. (Заметим также, что из-за небольших энергетических различий разные магнитные состояния системы имеют приблизительно одинаковые больцмановские заселенности при нормальных температурах.) Магнитные свойства зависят только от спиновой функции. Это обстоятельство лежит в основе часто используемого чисто спинового приближения для описания магнитных явлений. Для большинства магнитных свойств систем, представляющих интерес с точки зрения химии, такое приближение вполне удовлетворительно. Однако для магнитных эффектов с участием электронов, наблюдаемых в тяжелых элементах, релятивистские вклады настолько возрастают, что это приближение становится несостоятельным. Оно оказывается также неудовлетворительным в чрезвычайно сильных магнитных полях. [c.353]


    Магнитные явления, связанные с обменными токами [c.318]

    Различают общую (или физическую), техническую и хил ческую термодинамику. В общей термодинамике изучаются зайоны термодинамики и их приложения к свойствам веществ в твердом, жидком и газообразном состояниях, к электрическим и магнитным явлениям и к явлениям излучения. В технической термодинамике основные [c.77]

    Со времен работ В. Джильберта (1660), в течение более чем двухсот лет, электрические и магнитные явления рассматривали раздельно. В начале XIX в. Aparo исследовал случаи, когда удары молнии перемагничивали стрелки компасов, а в 1820 г. Эрстед обнаружил влияние электрического тока, протекавшего по проводу, на движения стрелки компаса, случайно оказавшегося рядом. Блестящие работы Ампера показали, что магнитными свойствами обладают именно движущиеся заряды — связь между электричеством и магнетизмом была установлена. Ампер обогнал свое время, сделав попытку распространить законы электромагнетизма на микромир. По его мнению, явления намагничивания объясняются круговыми токами внутри молекул. Развитие идей Ампера привело М. Фарадея к важнейшему открытию он установил, что движение магнита, вводимого в проволочную катушку, возбуждает в ней ток. Так было окончательно доказано, что движения электрических зарядов и магнитных полюсов неразрывно связаны друг с другом. [c.13]

    С точки зрения статистики уменьшение энтропии связано с большей упорядоченностью системы при изотермическом намагничивании (переходом в менее вероятное состояние). Часть энтропии, связанная с магнитными явлениями, — магнитная часть энтропии — уменьшается. Если намагничивание производить адиабатно, то постоянство энтропии юхраняется вследствие того, что 26 увеличение от повышения темпе-эатуры компенсируется уменьшением от убывания магнитной части. [c.294]

    Установление связи между взаимодействием молекул, строением и свойствами вещества (в том числе электрическими) является фундаментальной задачей молекулярной физики. Она относительно успешно решается методами статистической механики при небольших концентрациях молекул (частиц) и центральном характере их взаимодействия. Центральные силы— это силы, не зависящие от ориентации молекул. Диполь-дипольное взаимодействие к их числу не относится, и поэтому такие эффекты, как превращение полярного вещества в сегнетоэлектрик и другие явления в полярных веществах, пока еще не нашли исчерпывающего объяснения современной физикой. Родственная проблема — объяснение ферромагнетизма веществ — существовала в физике магнитных явлений. На атомно-электронном уровне она нашла решение [17] благодаря открытию специфического обменного взаимодействия спинов непарных электронов незаполнен-ньос внутренних электронных оболочек некоторых атомов (Ре, Со, N1 и др.). Это взаимодействие выстраивает спины непарных электронов параллельно, что и исчерпывает проблему. В мире электрических явлений такого аналога нет, и поэтому при решении задачи описания электрических свойств полярных веществ можно использовать только классические кулоновские силы (включая дипольные). Разумеется, что они не сводятся к сегнетоэлектричеству. [c.653]

    В 1979 г. появились первые сообщения об изучении эффекта акустоупрзтости в двух тесно связанных между собой организациях - исследовательском центре NASA в Лэнгли и университете г. Хьюстона. Руководят работами, соответственно, Дж. Хей-ман и К. Салама. С помощью продольных и сдвиговых волн исследуются приложенные и остаточные напряжения в цилиндрических и плоских образцах из различных сталей и алюминиевых сплавов [135, 138, 139, 161, 162, 165, 207, 284, 312, 313]. Имеется несколько статей и патентов, посвященных разработке ультразвуковых методов измерения усилий затяжки болтов [206, 208]. Большое внимание уделяется изучению взаимосвязи акустоупругого эффекта с тепловыми и магнитными явлениями в образце. Рассматривается возможность использования для контроля напряжений температурной зависимости скорости звука, причем не только в статистическом, но и в динамическом режиме, т.е. при импульсном нагреве образца, [c.22]

    Перспективна также насадка из ферритовых магнитомягких гранул, которая имеет ряд достоинств. Во-первых, ферриты обладают весьма крутой кривой намагничивания, причем в области малых значений напряженности намагничивающего поля, а это может давать предпосьшки для некоторого снижения режимного значения этой величины. Во-вторых, они практически не имеют остаточной намагниченности при устранении намагничивающего поля, что исключает необходимость применения дополнительных размагничивающих средств, особенно тогда, когда остаточные магнитные явления весьма нежелательны (например, для осуществления эффективной регенерации). [c.7]

    Нуклоны в ядре обмениваются заряженными виртуальными пионами, в результате чего возникает некоторый вклад в полный ядерный ток, называемый обменным током. Вследствие того, что гиромагнитное отношение пиона имеет большое значение еЦт = 7 е 2М) — к таким пионным степеням свободы особенно чувствительны магнитные явления. Фактически наиболее ясные экспериментальные подтверждения существования пионных обменных токов получаются из магнитных свойств малонуклонных систем, которым мы уделим значительное внимание. [c.296]


Библиография для Магнитные явления: [c.13]   
Смотреть страницы где упоминается термин Магнитные явления: [c.18]    [c.139]    [c.151]    [c.288]    [c.326]    [c.60]    [c.164]    [c.353]    [c.355]    [c.357]    [c.359]    [c.361]    [c.363]    [c.365]    [c.367]    [c.369]    [c.371]    [c.373]    [c.375]    [c.377]    [c.379]    [c.313]   
Смотреть главы в:

Квантовая химия -> Магнитные явления




ПОИСК







© 2025 chem21.info Реклама на сайте