Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Собственный базис функции линейной системы

    Таким же образом можно убедиться, что совокупность матриц А( г), найденная по методу (19,4) для всех элементов группы Г, образует представление группы Г, соответствующее уровню энергии Еп. Размерность этого представления равна кратности вырождения уровня Еп- При этом принято говорить, что система собственных функций образует базис для соответствующего представления группы Г. Представление A g), создаваемое собственными функциями, соответствующими одному уровню энергии, обязательно является неприводимым. В противном случае совокупность собственных функций а зпа, соответствующих одному значению Еп, можно было бы разбить на две или более частей, таких, что каждая из функций одной части выражалась бы линейной комбинацией типа (19,4) для всех элементов группы только через функции, относящиеся к данной части собственных функций. [c.86]


    При построении секулярного детерминанта удобно выбрать базисный набор, который отражает симметрию рассматриваемой системы ровно настолько, насколько это практически обосновано. Это уменьшает число матричных элементов, подлежащих вычислению. В данном случае оптимальный базис должен быть одновременно симметризован в соответствии с группами 8И п), К(3) и К(2) [см. цепочку (17.10)] или для частиц со спином 1/2 в соответствии с группами 81/(2) или Н(3) и К(2). Чрезвычайно простым для использования является базис спин-произведений, в котором каждая одночастичная функция представляет собой собственную функцию операций группы К(2), т. е. 2-компоненты углового момента. (Обозначим соответствующий оператор как Тг.) Для частиц со спином 1/2 такие функции связаны с магнитными спиновыми числами т5 12 и = = —1/2, т. е. являются спиновыми функциями аир. Функции, представляющие собой их простые произведения, не обязательно должны быть собственными функциями операций группы К(3) (т. е. квадрата полного углового момента, которому соответствует оператор Р), но из них легко построить линейные комбинации, являющиеся такими собственными функциями. Для системы из двух эквивалентных частиц со спинами 1/2, как, например, два протона в молекуле Нг, простые произведения спиновых функций таковы  [c.356]


Смотреть страницы где упоминается термин Собственный базис функции линейной системы: [c.155]    [c.247]    [c.198]   
ЯМР в одном и двух измерениях (1990) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Базис

Система линейная

Система функции

Собственные

Собственные функции для системы АВ



© 2025 chem21.info Реклама на сайте