Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амакриновые клетки

Рис. 14.15. Схема строеяия сетчатки 1 — пигментный эпителий, 2 — рецепторные клетки (палочки и колоочкп), 3—внешний синаптический слой, 4 — горизонтальные клетки, 5 — биполярные клетки, б — амакриновые клетки, 7 — внутренний синаптический слой, 5 — ганглиозные клетки, 9 — волокна зрительного нерва Рис. 14.15. Схема строеяия сетчатки 1 — <a href="/info/510335">пигментный эпителий</a>, 2 — <a href="/info/265893">рецепторные клетки</a> (палочки и колоочкп), 3—внешний синаптический слой, 4 — <a href="/info/265792">горизонтальные клетки</a>, 5 — <a href="/info/265755">биполярные клетки</a>, б — амакриновые клетки, 7 — внутренний синаптический слой, 5 — <a href="/info/98256">ганглиозные клетки</a>, 9 — волокна зрительного нерва

    Горизонтальные и амакриновые клетки соединяют соседние фоторецепторы, обеспечивая передачу информации в латеральном направлении, биполярные клетки передают информацию внутреннему синаптическому слою. Исследование электрической активности отдельных клеток показало, что рецепторные и горизонтальные клетки (а также в некоторых случаях биполярные клетки) испытывают плавную гиперполяризацию при освещении, не создавая нервного импульса. Иными словами, их мембранный потенциал становится более отрицательным. Это необычное поведение для нейрона. Как правило, нейроны деполяризуются, приобретают положительный мембранный потенциал при возбуждении. Импульсы обычно распространяются в нервных клетках по их длине. В указанных видах нервных клеток сетчатки эти события не происходят. Напротив, положительные нервные импульсы возникают в амакриновых и ганглиозных клетках. Именно последние служат источниками импульсов, поступающих в головной мозг. [c.466]

    Само строение сетчатки наводит на мысль об определенных способах обработки зрительной информации. Как показано на рис 18-52, отдельная биполярная клетка принимает сигналы от нескольких смежных фоторецепторов и передает свой ответ нескольким смежным ганглиозным клеткам в организации связей мы находим как конвергенцию, так и дивергенцию. Кроме того, наряду с биполярными клетками, передающими сигналы в направлении, перпендикулярном плоскости сетчатки, есть еще горизонтальные и амакриновые клетки, реализующие латеральное взаимодействие между соседними биполярными и ганглиозными клетками. Несмотря на сложность электрофи-зиологических деталей, основные принципы довольно просты. При соответствующем распределении тормозных и возбуждающих синапсов по вертикальным и латеральным связям можно передавать ганглиозным клеткам сигналы противоположного смысла. Например, свет, падающий на данный фоторецептор, может возбудить ганглиозную клетку, лежащую непосредственно под ним, но вызовет латеральное торможение окружающих ганглиозных клеток (рис. 18-57). Свет, падающий на соседний фоторецептор, [c.128]

    СИНАПТИЧЕСКАЯ ОБЛАСТЬ. Здесь фоторецепторные клетки образуют синапсы с биполярными клетками. Некоторые биполярные клетки связаны синапсами сразу с несколькими палочками, что обеспечивает конвергенцию раздражения, которая, как уже говорилось, повышает светочувствительность глаза, но снижает остроту зрения (разд. 17.4.2). Другие биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, поэтому острота колбочкового зрения выше, а чувствительность ниже. Горизонтальные и амакриновые клетки связывают между собой по несколько палочек и колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной обработке, в частности, они участвуют в латеральном торможении (см. ниже). [c.325]


    Горизонтальные клетки, каждая из которьгх стимулируется несколькими палочками и синаптически связана с несколькими биполярными нейронами (рис. 17.36), обеспечивают феномен так называемого латерального (бокового) торможения, повышающего как чувствительность, так и остроту зрения. Упрощенно говоря, если эти клетки одновременно получают сигналы одинаковой интенсивности от двух соседних палочек, то они их взаимно гасят , т. е. тормозят дальнейшее проведение. В результате эффективными оказываются только сигналы от неодинаково возбужденных рецепторов, а это повышает контрастность изображения — подчеркивается разница между сильно и слабо освещенными участками поля зрения, что позволяет лучше различать, например, контуры объектов. Амакриновые клетки, каждая из которых стимулируется несколькими биполярными нейронами и синаптически связана с несколькими ганглиозными клетками, передают информацию об изменениях уровня освещенности. [c.327]

    Нейронные сети сетчатки. Общее строение сетчатки уже обсуждалось в главе 11. Можно напомнить, что в сетчатке имеется пять основных типов клеток рецепторы, биполярные клетки, горизонтальные клетки, амакриновые клетки и ганглиозные клетки, и что они образуют последовательные слои, обеспечивающие как прямую передачу сигналов, так и латеральные взаимодействия. Среди синаптических контактов между этими клетками есть несколько специализированных типов, обсуждавшихся в главе 5. [c.439]

    Во-вторых, имеется заметная разница в реакциях на стимуляцию центра и периферии. Соответствующие потенциалы биполярной клетки имеют разные знаки, а ганглиозная клетка (Gi) отвечает возбуждением на центральную и торможением на периферическую стимуляцию. Это является выражением фундаментального свойства организации рецептивных полей ганглиозных клеток — антагонизма между центром и периферией. Поскольку реакции рецепторов всегда только постепенно убывают при сдвиге стимула на периферию, эти данные показывают, что антагонизм между центром и периферией обусловлен организацией синаптических связей внутри сетчатки в них участвуют главным образом элементы с латерально ориентированными отростками — горизонтальные и амакриновые клетки. [c.441]

    Обратимся к строению сетчатки. Это многослойная структура, схематически изображенная на рис. 14.15. Слои клеток указаны в подписи к рисунку. Изображение возникает на пигментном эпителии 1. В слое 3 осуществляется синаптическая связь фоторецепторных клеток 2 с нервными горизонтальными клетками 4. Другие нервные клетки — биполярные 5 и амакриновые 6 — си-наптически связаны в слое 7 с ганглиозными клетками 8, которые являются непосредственными источниками импульсов, поступающих в аксоны зрительного нерва. Входной сигнал — оптическое изображение на пигментном эпителии, выходной — нейральное изображение, закодированное импульсами в зрительном нерве. Для того чтобы дойти до фоторецепторов, свет должен пройти сквозь слои нервных клеток — фоторецепторные клетки защищены тем самым от вредных воздействий. [c.463]

Рис. 1.8, Трехслойное строение сетчатки глаза палочки и колбочки, биполярные и ганглионарные клетки. Имеется также промежуточная сеть горизонтальных и амакриновых клеток. На этой схеме не отражена конвергенция, на каждые 100 палочек или колбочек имеется только одна ганглионарная клетка. На изображенном здесь уровне происходит уже значительная интеграция и обработка световых импульсов. (Воспроизводится с разрешения Pro eedings Рис. 1.8, <a href="/info/1281589">Трехслойное строение</a> <a href="/info/1435776">сетчатки глаза палочки</a> и колбочки, биполярные и <a href="/info/265780">ганглионарные клетки</a>. Имеется <a href="/info/1097787">также промежуточная</a> сеть горизонтальных и амакриновых клеток. На этой схеме не отражена конвергенция, на каждые 100 палочек или колбочек имеется только одна <a href="/info/265780">ганглионарная клетка</a>. На изображенном здесь уровне происходит уже значительная интеграция и обработка световых импульсов. (Воспроизводится с разрешения Pro eedings
    Фоторецепторы передают свою информацию через синапсы в систему нейронов, находящуюся в среднем слое сетчатки. Этот слой состоит из биполярных, горизонтальных и амакриновых клеток (рис. 18-52). Нейроны всех этих трех классов настолько малы, что могут проводить сигналы путем пассивного распространения потенциалы действия в них не возникают. У горизонтальных и амакриновых клеток (рнс. 18-53) отросткн направлены в стороны, параллельно плоскости сетчатки, тогда как у биполярных клеток они ориентированы перпендикулярно и обеспечивают прямую связь со следующим слоем-с ганглиозными клетками сетчатки. Ганглиозные клетки посылают аксоны к мозгу, кодируя зрительную информацию в форме потенциалов действия. У млекопитающих информация, воспринимаемая глазом, поступает главным образом в первичную зрительную зону коры головного мозга (илн, как говорят ради краткости, в зрительную кору) через синапсы мозговой передаточной станции , называемой латеральным коленчатым ядром (рис. 18-51). В зрительной коре, которая состоит из нескольких слоев нейронов, зрительная информация вновь переходит от слоя к слою в направлении, более или менее перпендикулярном к поверхности коры мозга. Из первичной зрительной зоны нервные волокна передают информацию другам областям коры. (Картина усложняется тем, что информация от правого н от левого глаза поступает в одну и ту же область зрительной коры, но мы отложим рассмотрение этого обстоятельства до конца главы.) [c.126]


Рис. 17.36. Схема строения сетчатки глаза с деталями ультраструктуры палочек и колбочек. Показаны связи между сенсорными клетками и нейронами зрительного нерва. Лучи света должны пройти через слои ганглиозных, амакриновых и биполярных клеток, прежде чем они достигнут палочек и колбочек. Рис. 17.36. <a href="/info/325342">Схема строения</a> <a href="/info/103550">сетчатки глаза</a> с деталями ультраструктуры палочек и колбочек. Показаны <a href="/info/26849">связи между</a> <a href="/info/100367">сенсорными клетками</a> и нейронами <a href="/info/278653">зрительного нерва</a>. <a href="/info/701634">Лучи света</a> должны пройти <a href="/info/151977">через слои</a> ганглиозных, амакриновых и биполярных клеток, прежде чем они достигнут палочек и колбочек.
    Шсле возникновения рецепторного потенциала в зрительной клетке в последующие события вовлекается пре-синаптическая область палочек и колбочек и контактирующие с ними отростки горизонтальных и биполярных нервных клеток. На эти нервные клетки сигнал передается с помощью медиатора ацетилхолина. В свою очередь биполярные клетки образуют синаптические связи с амакриновыми и ганглиозными клетками. Прямой афферентный путь сформирован из фоторецепторной биполярной и ганглиозной клеток. Горизонтальные и амакрино-вые нервные клетки обеспечивают коллатеральное, ре зервное взаимодействие. На уровне нервных клеток и их волокон зрительный сигнал передается с помощью электрического потенциала действия спайка, а в местах вторичных синапсов — с помощью ацетилхолина. [c.145]

    Подобно тому как это происходит в коре головного мозга и мозжечка, в сетчатке по мере ее развития разные нейроны группируются в слои свето-и цветочувствительных фоторецепторных клегок. тел ганглиозных клегок и биполярных промежуточных нейронов, передающих электрические стимулы от палочек и колбочек к гантлиозны.м клеткам (рис. 5,27). В дополнение к ним имеются многочисленные глиальные клетки, поддерживающие целостность сетчатки, а также амакриновые и горизонтальные нейроны, которые передают злектрические импульсы в горизонтальном направлении. [c.165]


Смотреть страницы где упоминается термин Амакриновые клетки: [c.126]    [c.278]    [c.440]    [c.11]    [c.103]    [c.122]   
Нейрохимия Основы и принципы (1990) -- [ c.20 ]

Молекулярная биология клетки Том5 (1987) -- [ c.126 ]

Биология Том3 Изд3 (2004) -- [ c.324 , c.325 , c.327 ]




ПОИСК







© 2025 chem21.info Реклама на сайте