Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парадокс Уайтхеда

    Приближенные решения уравнения Навье-Стокса для промежуточных значений критерия Рейнольдса. Решения Стокса и Адамара получены при значениях критериев Рейнольдса Кс1 и Кег, много меньших единицы Обтекание твердой сферы при малых, но конечных значениях Кез впервые исследовалось Уайтхедом (1889 г.), который применил к решению уравнений Навье - Стокса метод последовательных приближений, разлагая поле потока в ряд по степеням Ясз. Однако построенное Уайтхедом решение противоречило граничным условиям вдали от сферы. Второе приближение для скорости не удовлетворяло условиям равномерного потока на бесконечности, а более высокие приближения на бесконечности расходились. Таким образом, все члены разложения, кроме главного, не удовлетворяли граничным условиям. Этот парадокс, свойственный задачам обтекания тел конечных размеров, был назван парадоксом Уайтхеда. Его объяснение и правильное решение при малых значениях Кег было осуществлено в работе Озеена [1]. Озеен показал, [c.11]


    Решения Стокса и Адамара получены при бесконечно малых значениях критерия Рейнольдса. Обтекание твердой сферы при малых, но конечных значениях Ре впервые исследовалось Уайтхедом (1889 г.), который к решению уравнений Навье — Стокса применил метод последовательных приближ-ений, разлагая поле потока в ряд по степеням критерия Ке. Однако построенное Уайтхедом решение противоречило граничным условиям вдали от сферы. Второе приближение для скорости не удовлетворяло условиям равномерного потока на бесконечности, а более высокие приближения на бесконечности расходились. Таким образом, все члены разложения, кроме главного, не удовлетворяли граничным условиям. Этот парадокс, свойственный задачам обтекания тел конечных размеров, был назван парадоксом Уайтхеда. Его объяснение и правильное решение при малых значениях Ке было осушествлено в работе Озеена [7]. Озеен показал, что стандартный метод разложения по малому параметру неприменим ввиду того, что пренебрежение инерционными членами в уравнении Навье — Стокса, по сравнению с вязкостными, оказывается некорректным вблизи области установления равномерного течения. Это в основном сказывается при определении производных от скорости на больших расстояниях от сферы и практически не влияет на величину коэффициента сопротивления, определяемого характеристиками потока вблизи сферы. Согласно Озеену, коэффициент сопротивления для твердой сферы может быть вычислен по формуле  [c.15]

    Приближение Озеена и высшие приближения. Полностью безынерционное обтекание сферы является адекватным эксперименту лишь в предельном случае Ке 0. Уже при Ке = 0,05 по данным [219] погрешность оценки сопротивления по формуле (2.2.19) составляет 1,5 ч- 2%, а при Ке = 0,5 находится в пределах 10,5 ч- 11%. По этой причине оценкой для коэффициента сопротивления f = 12/Ке можно пользоваться только при Ке < 0,2 (максимальная погрешность в этом случае не превышает 5%). Попытка улучшить приближение Стокса простым итерационным учетом конвективных членов приводит к уравнению, для которого нельзя построить решение, удовлетворяющее условию на бесконечности. Этот факт известен как парадокс Уайтхеда, происхождение которого связано с сингулярностью решения на бесконечности. [c.52]


Смотреть страницы где упоминается термин Парадокс Уайтхеда: [c.151]    [c.153]   
Гидродинамика, массо и теплообмен в колонных аппаратах (1988) -- [ c.11 ]




ПОИСК







© 2025 chem21.info Реклама на сайте