Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дезоксирибонуклеиновая кислота как генетический материал

    Выяснение молекулярной структуры генетического материала -ДНК - без сомнения стало одним из самых замечательных научных достижений XX в. Уотсон и Крик описали свое открытие так Мы хотим предложить структуру соли дезоксирибонуклеиновой кислоты (ДНК). Эта структура обладает весьма необычными свойствами, представляющими большой биологический интерес... Она образована двумя спиральными цепочками, закрученными вокруг общей оси... Обе спирали правые, но... последовательности атомов в них взаимно противоположны... Весьма интересен способ, с помощью которого цепочки удерживаются вместе... Пуриновые и пиримидиновые основания образуют пары, при этом пуриновое основание одной цепи соединяется водородными связями с пиримидиновым основанием другой... Если одно из оснований пары - это аденин, то... вторым основанием должен [c.45]


    Технология рекомбинантных ДНК (ее называют также молекулярным клонированием или генной Инженерией) — это совокупность экспериментальных процедур, позволяющая осуществлять перенос генетического материала (дезоксирибонуклеиновой кислоты, ДНК) из одного организма в другой. Никакого единого, универсального набора методик здесь не существует, но чаще всего эксперименты с рекомбинантной ДНК проводят по следующей схеме (рис. 4.1). [c.50]

    Известны нуклеиновые кислоты двух классов рибонуклеиновые (РНК), которые в качестве сахара содержат /)-рибозу, и дезоксирибонуклеиновые (ДНК), содержащие 2-дезокси-/)-рибозу. ДНК содержится в клеточных ядрах и представляет собой тот генетический материал, который передает информацию для синтеза белков от одного поколения к другому. В некоторых вирусах эту функцию выполняет РНК. [c.399]

    Вообще-то молекула дезоксирибонуклеиновой кислоты, а это неуклюжее название и кроется за сокращением ДНК, не была чем-то новым. Она была открыта в клеточных ядрах швейцарским врачом И. Ф. Мишером еще в 1868 г. Затем было показано, что ДНК сосредоточена в хромосомах, и это, казалось бы, говорило о ее возможной роли в качестве генетического материала. Однако в 20-х и 30-х годах прочно утвердилось мнение, что ДНК — это регулярный полимер, состоящий из строго повторяющихся четверок мономерных звеньев (аденинового, гуанинового, ти-минового и цитозинового) и поэтому эта молекула не может нести генетическую информацию. [c.17]

    Дезоксирибонуклеиновая кислота (ДНК). Полинуклеотид, содержащий в качестве углеводного остатка дезокси-рибозу представляет собой основной генетический материал всех клеток. [c.307]

    Каждая нервная клетка обладает ядром. Как и в других эукариотических клетках, ядро содержит генетический материал в форме хромосом. Хромосомы состоят из дезоксирибонуклеиновой кислоты (ДНК) и белков, которые вместе образуют гены — основные единицы наследственности. Посредством генов ядро выполняет две важные функции. Во-первых, оно контролирует [c.82]

    Мутация — изменение генетического материала (передающееся по наследству и обычно вызванное изменением структуры соответствующего участка дезоксирибонуклеиновой кислоты хромосомы), кодирующего некоторый признак организма. [c.507]

    Наша главная задача состояла в том, чтобы раскрыть сущность и глубину экспериментальных подходов науки, которая бьша названа молекулярной генетикой, применительно к эукариотическим организмам. Чтобы решить эту задачу, а также облегчить понимание материала читателями, обладающими ограниченным объемом знаний по биохимии, клеточной биологии и генетике, мы постарались изложить основы этих направлений биологии двумя способами. Во-первых, в гл. 1, 2 и 3 суммирована наиболее важная информация о структуре ДНК, РНК и белков о различных клеточных процессах, протекающих с участием ДНК (репликация, репарация и рекомбинация) об основных механизмах транскрипции, трансляции и контроле экспрессии генов. Читатели, хорошо ориентирующиеся в данных вопросах, могут пропустить эти главы. Во-вторых, во введениях к частям I, II и III даны исторические экскурсы и общий взгляд на проблемы, изложенные в главах, составляющих эти части. В них не говорится детально о том, как были открыты и доказаны те или иные положения, а делается попытка объяснить, как на основе различных исследований в области биохимии, генетики, микробиологии, клеточной и эволюционной биологии бьш выстроен интеллектуальный каркас современной биологии. Так, во введении, предваряющем гл. 1, 2 и 3, прослеживается исторический путь, приведший нас к современному взгляду на наследственность. Мы знакомимся с концепцией гена, трансмиссией и сегрегацией генов, с логическим переходом от первичного картирования генетических детерминант к точной локализации генов на хромосоме, с идентификацией генов как дискретных участков молекулы дезоксирибонуклеиновой кислоты и информационными взаимоотношениями между ДНК, РНК и белками. [c.6]


    В настоящее время основную схему организации живой материи можно считать известной. Нуклеиновые кислоты несут всю генетическую информацию, которая заложена в последовательности четырех различ ных нуклеотидных оснований. Существуют нуклеиновые кислоты двух типов. Более стабильная дезоксирибонуклеиновая кислота (ДНК) является хранителем информации. Менее стабильная рибонуклеиновая кислота (РНК), транскрибирующаяся с ДНК, выполняет роль матрицы, которая транслирует нуклеотидный текст в аминокислотные последовательности белков с помощью рибосомного механизма. Белки участвуют фактически во всех типах деятельности организма. [c.9]

    Существуют два различных типа нуклеиновых кислот —дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В прокариотических клетках, кроме основной хромосомной ДНК, часто встречаются вне хромосомные ДНК — плазмиды. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Эукариотические клетки содержат ДНК также в различных органел-лах (митохондриях, хлоропластах). Что же касается РНК, то а клетках имеются матричные РНК (мРНК), рибосомные РНК (рРНК), транспортные РНК (тРНК) и ряд других кроме того, РНК входят в состав многих вирусов. [c.296]

    Специфическую последовательность аминокислот в белках определяют две встречающиеся в природе нуклеиновые кислоты— дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК), — также имеющие цепочечное строение (структура и свойства этих кислот рассмотрены в гл. XVII—XIX). В клетке содержится набор различных молекул нуклеиновых кислот. ДНК представляет собой генетический материал и находится главным образом в хромосомах последовательность входящих в ее состав оснований служит генетическим кодом клетки. Две различные молекулы ДНК можно сравнить с двумя книгами, которые внешне совершенно одинаковы, но тем не менее одна из них повествует, скажем, о слонах, а другая — о муравьях. Если учесть, какое множество признаков должно быть закодировано в ДНК, то станет ясным, почему в клетке может существовать много разных видов ДНК. В клетке имеется также несколько различных видов РНК. Последняя содержится преимущественно в цитоплазме — там, где происходит процесс синтеза белка. Вопрос о том, какую роль играют разные виды РНК в синтезе белка, рассмотрен в разд. 4 гл. XX. [c.20]

    В природе встречаются две высокомолекулярные нуклеиновые кислоты дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). ДНК находится преимущественно в хромосомах и представляет собой основной генетический материал клетки. Обычно в клетках содержится гетерогенный набор ДНК различных типов, 0тл1ичающихся последовательностью оснований. Гомогенную ДНК можио найти в бактериофаге. РНК служит посредником в передаче генетической информации от ДНК к белку при его синтезе. Больше всего ее в цитоплазме, особенно в рибосомах. Биологическая роль нуклеиновых кислот рассмотрена в последующих главах. В настоящей главе мы остановимся на элементах первичной структуры нуклеиновых кислот. [c.302]

    Существует три различных источника молекул ДНК, используемых в генной инженерии. Первым, важнейшим из них, являются фрагменты генетического материала различных организмов. Вторим источником могут быть двунитевые дезоксирибонуклеиновые кислоты, полученные на основе однонитевой ДНК комплементарной мРНК эукариотических организмов (дн-кДНК). [c.136]


Смотреть страницы где упоминается термин Дезоксирибонуклеиновая кислота как генетический материал: [c.594]    [c.26]    [c.16]    [c.147]   
Биохимия Том 3 (1980) -- [ c.182 , c.183 ]

Биохимия растений (1966) -- [ c.488 ]




ПОИСК





Смотрите так же термины и статьи:

Дезоксирибонуклеиновые кислоты



© 2024 chem21.info Реклама на сайте