Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мономерное звено

    Число мономерных звеньев в полимере п [c.251]

    Высокоэластичность, так/ке как и ряд других особенностей поведения эластомеров, обусловлена их молекулярной структурой. Все эластомеры относятся к высокополимерам цепного строения, т. е. состоят из гигантских цепных молекул, в которых тысячи повторяющихся структурных единиц (мономерных звеньев) соединены последовательно обычными валентными связями. [c.18]


    Присоединение мономерных звеньев в молекулярных цепях полимеров сопряженных диенов в положении 1,4, 1,2 или 3,4 от содержания 1,2- и 3,4-присоединений непосредственно зависит молярная когезия полимеров и, соответственно, их температура стеклования. [c.20]

    Полимеры бутадиена и изопрена, полученные под влиянием комплексных катализаторов. Применение комплексных катализаторов Циглера — Натта при полимеризации бутадиена и изопрена позволяет получить стереорегулярные полимеры с определенным типом присоединения мономерных звеньев, причем содержание звеньев заданного типа составляет обычно более 90°/о- [c.59]

    Обозначим через полимер степени полимеризации п, т. е. состоящий из п мономерных звеньев. Этот полимер образуется путем последовательных реакций Р М- Р2, Р + М —> Р3 и т. д. Вообще [c.110]

    Так как переход полимеров в стеклообразное состояние связан с резким изменением их свойств, то температура стеклования представляет собой в большинстве случаев нижний температурный предел использования эластомерных материалов. В зависимости от химической природы и структуры мономерных звеньев значения температуры стеклования различных эластомеров охватывают широкий интервал температур (от —130 до 0°С). [c.45]

    Мономерное звено (жидкость) [c.261]

    Цис- и транс-конфигурации мономерных звеньев относительно жестких участков цепи, не допускающих внутреннего вращения. [c.19]

    Стереорегулярность, и вообще определенная последовательность присоединения мономерных звеньев, в значительной мере фиксируются выбором каталитической системы. В то же время остальные молекулярные параметры зависят в основном от условий проведения полимеризации — температуры, давления, концентрации, степени превращения (конверсии) мономеров и др. [c.54]

    Мономеры для получения тройных сополимеров. Углеводороды как мономеры для получения тройных сополимеров должны быть доступны, обладать высокой активностью в процессе сополимеризации (или должны легко регенерироваться). Необходимо, чтобы мономерные звенья были равномерно распределены в полимерной цепи. Сополимер должен вулканизоваться с достаточно высокой скоростью. [c.303]

    Молекулярная масса и молекулярно-массовое распределение. Важнейшим молекулярным параметром, определяющим физические и технические свойства полимеров, в частности, их способность к высокоэластической деформации, является длина молекулярных цепей, которая обычно характеризуется степенью полимеризации Р, т. е. числом мономерных звеньев, входящих в цепь, или молекулярной массой М, равной М = Рт, где т — молекулярная масса мономерного звена. Величина молекулярной массы эластомеров обычно имеет порядок 10 —10 , хотя в последнее время для получения различных резиновых изделий все шире используются так называемые низкомолекулярные полимеры с М порядка 10 —Ю".  [c.21]


    Механизм полимеризации. В отличие от процессов полимеризации непредельных углеводородов с открытой цепью, когда в ходе реакции в каждом мономерном звене исчезает двойная связь и возникает новая простая С—С-связь, при полимеризации [c.319]

    Распределение звеньев в цепях сополимера характеризуют различными параметрами в зависимости от задачи исследования. Во многих случаях удобным оказалось использовать, так называемое блоковое число , определяемое как среднее число блоков, приходящееся на каждые 100 мономерных звеньев [24]. Эта величина находится в простой связи с параметрами, используемыми в теории сополимеризации, и рядом структурных характеристик цепи, например долей связей данного типа. В других случаях более наглядной представляется характеристика распределения звеньев в цепях долей звеньев данного сорта, содержащихся в последовательностях определенной длины. Для блоксополимеров полезной Характеристикой является коэффициент полидисперсности для каждого компонента, который, очевидно, непосредственно связан с распределением по длине и числу блоков. [c.27]

    Длина молекулярной цепи, вытянутой в плоский зигзаг, Амане определяется числом мономерных звеньев, составляющих цепь, длиной связей и величиной валентных углов. Эта длина, однако, является далеко не достаточной характеристикой размеров макромолекул. [c.29]

    Первые количественные оценки разветвленности цепей эмульсионных полимеров были выполнены в работах [23—27].. Было установлено в частности, что в полибутадиене разветвленным является в среднем одно мономерное звено из нескольких тысяч. [c.65]

    Реакцию полимеризации можно представить как результат раскрытия двойных связей в множестве молекул непредельного соединения (в данном случае этилена) и последующего соединения этнх молекул друг с другом в одну гигантскую макромолекулу. Величина п выражает степень полимеризации — указывает число мономерных звеньев, образующих макромолекулу. Начало полимеризации этилена вызывается введением небольшого количества (0,05—0,1%) кислорода. [c.500]

    Как и для всех сополимерных каучуков, свойства указанных эластомеров наряду с ММР и разветвленностью существенно зависят от композиционной неоднородности, т. е. от характера распределения различных мономерных звеньев по цепи. В данном случае ухудшение эластических свойств может быть связано, во-первых, с наличием длинных этиленовых блоков, приводящих к образованию в массе каучука кристаллической фазы и, во-вторых, с неоднородным распределением третьего (диенового) мономера, что вызывает образование неоднородной сеточной структуры при вулканизации. Для тройных сополимеров возможно возникновение сшитых кристаллических структур. [c.62]

    В результате роста цепи образуется линейный полимер, в котором мономерные звенья связаны друг с другом по типу голова к хвосту . Полимерные структуры, связанные голова к голове тати хвост к хвосту , не образуются, несмотря на меньшие стерические препятствия. Образование таких структур при росте цепи повлекло бы за собой переход положительного заряда с третичного атома углерода к первичному, что энергетически невыгодно. [c.329]

    Протекание процесса непосредственно на четырехцентровом активном комплексе обеспечивает статистическое распределение мономерных звеньев вдоль цепи. [c.275]

    Разумеется, из-за погрешностей измерения теплот реакций, числа мономерных звеньев в полимере, концентраций мономера данные различных исследователей по определению АЯм и А5м для одной и той же реакции могут ощутимо различаться [до 30—40% (отн.)]. В связи с этим и справочные данные, приводимые в обзорных работах, не всегда согласуются [6,7]. Все же для термодинамического анализа можно рекомендовать приведенные в табл. 67 данные. [c.259]

Таблица 69. Теплоты испарения мономеров ЛЯ м, образования мономеров ДЯобр А и полимеров ЛЯобрП< теплоты полимеризации ДЯмжт различных соединений (все теплоты в кДж1моль мономерного звена) Таблица 69. <a href="/info/3540">Теплоты испарения</a> мономеров ЛЯ м, <a href="/info/306106">образования мономеров</a> ДЯобр А и полимеров ЛЯобрП< <a href="/info/773">теплоты полимеризации</a> ДЯмжт <a href="/info/39814">различных соединений</a> (все теплоты в кДж1<a href="/info/375126">моль мономерного</a> звена)
    Сравнение эластических свойств вулканизатов, отличающихся структурой мономерного звена, показывает, что повышение морозостойкости связано с уменьшением мольной энергии когезии, которая составляет для полимеров на основе диэтилового эфира 4,9 кДж/моль, диэтилформаля 4,6 кДж/моль и ди(р-этоксиэтил) форМаля 4,0 кДж/моль. Возрастание энергии когезии соответствует увеличению содержания полярных атомов серы в основном звене тиоколов [36]. [c.568]

    Легко убедиться также, что постоянные изменения при присоединении мономерного звена наблюдаются и для А5 реакций в газовой или жидкой фазах. [c.256]


    Дж/(моль мономерного звена-К) [c.259]

    Теплота полимеризации, кДж/моль мономерного звена [c.261]

    Энтропия 3 Дж/(моль мономерного звена-К] [c.265]

    Число мономерных звеньев в сополимере [c.275]

    Молекулярная подвижность в полимерах и их физические состояния. В ряду макроскопических свойств полимерных материалов, определяющих области их применения, особая роль принадлежит механическим свойствам. Они у полимеров являются уникальными, не характерными для обычных низкомолекулярных веществ. Это обусловило выделение высокомолекулярных соединений в особый класс материалов, поведение которых не может быть охарактеризовано на основе обычных представлений об агрегатных состояниях вещества. Как известно, в молекулярной физике эти состояния определяют в зависимости от интенсивности и характера теплового движения его основных структурных и кинетических единиц. В случае низкомолекулярных веществ оба типа единиц совпадают, для полимеров же такое совпадение не имеет места. --Их- структурной единицей является макромолекула, но перемещение макромолекулы — это не единовременный акт, а совокупность последовательных перемещений отдельных сравнительно независимых субчастей цепи — кинетических сегментов. Такой сегмент, содержащий от нескольких единиц до нескольких десятков мономерных звеньев, и является основным типом кинетических единиц в полимере. [c.39]

    Иной подход к стеклованию основан на широко распространенной концепции свободного объема, важной для понимания молекулярной по движности в веществе. Эта концепция исходит из представления о наличии в жидкостях, в том числе полимерных, некоторой доли незанятого объема, который можно представить как дырки порядка размеров мономерного звена или пустоты меньшей величины, обусловленные нерегулярной упаковкой цепей. Этот объем является значительным только при Т > Т , именно поэтому возможны молекулярные перегруппировки и связанная с ними сегментальная подвижность. При понижении температуры доля свободного объема резко сокращается, пока не достигнет при Г = Гс некоторой минимальной величины, практически одинаковой для всех полимеров и неизменяющейся при дальнейшем понижении температуры. Этой величины свободного объема, однако, недостаточно для перескока сегментов из одного равновесного положения в другое. [c.43]

    Регулярность строения цепи является важнейшим структурным фактором, ответственным за способность полимера кристаллизоваться. В наибольшей мере эта способность присуша диеновым полимерам с высоким содержанием мономерных звеньев, присоединенных в положении гране-1,4-(гуттаперча, транс-поли-хлоропрен, гранс-полибутадиен). Соответствуюшие с-1,4-поли-меры также обладают значительной способностью кристаллизоваться, однако их скорость кристаллизации и максимальная степень кристалличности резко падает с уменьшением цмс-звеньев в цепи. Эластомеры с содержанием ис-звеньев от 30 до 70% не кристаллизуются. [c.47]

    Во всех этих случаях распределение мономерных звеньев по цепи носит случайный, статистический характер, а при Г( = га = О происходит правильное чередование мономеров. При этом оба мономера входят в состав сополимера в эквимолекулярных количествах, независимых от состава исходной смеси мономеров. Стремление к чередованию увеличивается по мере уменьшения значений г, и Га и Г1Г2 от единицы до нуля. [c.143]

    В качестве модификаторов, способствующих беспорядочному распределению мономерных звеньев, запатентованы простые эфиры, тиоэфиры, третичные амины [14], фосфиты, тиофосфиты, амидо-фосфиты [15], гексаметилфосфортриамид [16], замещенные пири-дины [17], винилзамещенные гетероциклические азотсодержащие соединения [18], 1,2-диалкилгидроксибензолы [19], производные триазина [20], ортоэфиры [21], соединения с несколькими атомами кислорода или азота [22], полиалкиленглйколи [23], поверхностноактивные вещества [24] и вещества, содержащие гидрофильные группы [25], Наибольший интерес для промышленной реализации представляют соединения других щелочных металлов, в частности калия, особенно их диалкилалюминийоксипроизводные [26]. В последние годы появился ряд работ и патентов по синтезу статистических сополимеров диеновых и винилароматических мономеров в присутствии органических соединений щелочноземельных металлов [27]. [c.272]

    Температуры плавления полиалкенамеров зависят от длины мономерного звена и конфигурации двойной связи. Для ряда незамещенных гранс-полиалкенамеров (80—90% гранс-звеньев) установлена эмпирическая линейная зависимость Гпл от величины, обратной числу углеродных атомов в мономерном звене [18]. Влияние относительного содержания геометрических изомеров на температуру плавления было исследовано для полипентенамера [6] и полиоктенамера [5]. [c.322]

    Полисульфидные эластомеры, выпускаемые в промышленном масштабе, отличаются структурой мономерного звена и степенью полисульфидности. Наиболее распространенными эластомерами в США являются тиоколы А, РА и 8Т. Высокомолекулярный полимер марки ДА выпускается в СССР. [c.557]

    Стойкость вулканизатов тиоколов к растворителям определяется структурой мономерного звена, содержанием серы в нем, а также степенью разветвленности. Лучшую стойкость к растворителям имеет тетрасульфидный тиокол А. Вулканизаты тиоколов ДА, РА и 5Т имеют более высокую степень набухания в бензоле, однако по набуханию в других растворителях они близки к тиоколу А. Вулканизаты довольно хорошо противостоят действию разбавленных соляной и серной кислот. [c.569]

    Полиэтилен, испо.1ьзуемый, например, как упаковочный материал, — один из важнейших представителей класса соединений, называемых полимерами. Полимер - это большая молекула, состоящая из большого числа (500 - 20 ООО и более) повторяющихся мономерных звеньев. В полиэтилене такой повторя- [c.219]

    Учет стохастических особенностей процесса эмульсионной полимеризации. Процесс эмульсионной полимеризации является типичным процессом, для которого характерна двойственная де-терминированно-стохастическая природа [23]. К детерминированным свойствам процесса можно отнести непрерывные процессы химического превращения, а к стохастическим — явление вхождения первичных радикалов из водной фазы в полимер-мономерные частицы (которое имеет большее значение, когда скорость диффузии радикалов из водной фазы в частицы превышает скорость обрыва цепи), а также эффекты взаимодействия (дробления и коалесценции) включений дисперсной фазы между собой. Стохастические свойства системы в приведенных выше феноменологических уравнениях (3.47)—(3.68) отражаются среднестатистическими величинами с , тпр-, Для определения этих величин необходима формулировка соответствующих уравнений БСА, записанных относительно функций распределения латексных частиц по объемам V, числу мономерных звеньев растущего макрорадикала 2 и числу молекул мономера в них для растущих и нерастущих макрорадикалов  [c.159]


Смотреть страницы где упоминается термин Мономерное звено: [c.49]    [c.19]    [c.21]    [c.322]    [c.558]    [c.257]    [c.259]    [c.259]    [c.260]    [c.260]    [c.261]    [c.273]    [c.232]    [c.541]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.12 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.12 ]

Методы кинетических расчётов в химии полимеров (1978) -- [ c.8 , c.52 , c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Анизотропия оптическая мономерного звена

Анизотропия сегмента и мономерного звена макромолекул некоторых полимеров

Внутримолекулярное распределение мономерных звеньев

Вторичная структура отвечает спиралям, построенным из мономерных звеньев

ЖК сополимеры, содержащие мезогенные мономерные звенья

Звенья

Изучение распределения мономерных звеньев

Инверсия мономерных звеньев

Конформации мономерных звеньев и механизм гибкости цепной молекулы

Куна, сегментная анизотропия н анизотропия мономерного звена некоторых гребнеобразных полимеров

Модели свободносочлененных мономерных звеньев

Мономерное звено полимера

Полибутилметакрилат модель мономерного звена

Полимеры с двумя заместителями в мономерном звене

Полимеры с одним заместителем в мономерном звене

Приложение В. Структура мономерных звеньев некоторых наиболее общеизвестных полимеров

Распределение мономерных звеньев

Распределение мономерных звеньев в сополимерах

Синтез мономерных звеньев лигнина

Строение мономерного звена

Структурное расположение мономерных звеньев



© 2025 chem21.info Реклама на сайте