Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технология рекомбинантных

    Технология рекомбинантных ДНК (ее называют также молекулярным клонированием или генной Инженерией) — это совокупность экспериментальных процедур, позволяющая осуществлять перенос генетического материала (дезоксирибонуклеиновой кислоты, ДНК) из одного организма в другой. Никакого единого, универсального набора методик здесь не существует, но чаще всего эксперименты с рекомбинантной ДНК проводят по следующей схеме (рис. 4.1). [c.50]


    Молекулярная биотехнология — это увлекательнейшая область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуш ествляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах. В ч. I мы познакомим читателя с концепциями молекулярной биотехнологии и теми микроорганизмами, которые в ней используются, с основами молекулярной биологии и методологией рекомбинантных ДНК. Будут описаны такие методы, как химический синтез генов, полимеразная цепная реакция (ПЦР), определение нуклеотидной последовательности (секвенирование) ДНК. Помимо успешного клонирования нужного гена очень важно обеспечить его правильное функционирование в организме нового хозяина, поэтому мы остановимся также на способах оптимизации работы клонированных генов в про- и эукариотических системах. И наконец, мы рассмотрим, как можно улучшить свойства конечных продуктов, модифицируя клонированные гены путем введения в них специфических нуклеотидных замен (мутагенез in vitro). В целом материал, изложенный в первой части, служит фундаментом, который позволяет понять различные аспекты конкретных применений молекулярной биотехнологии. [c.13]

    Каждая глава завершается подробным резюме и списком вопросов для повторения. Мы надеемся, что это поможет усвоить прочитанное. Все ключевые идеи иллюстрируются тщательно подобранными цветными рисунками (всего их более 200) мы убеждены, что один рисунок может сказать больше, нежели тысяча слов. Гл. 1 знакомит читателя с основами молекулярной биотехнологии и некоторыми коммерческими аспектами, а следующие пять глав (гл. 2-6) — с ее методологией. Все вместе эти главы подготовят читателя к восприятию материала всех последующих глав. В гл. 7-12 части II рассмотрены способы получения ценных метаболитов, вакцин, лекарственных веществ и продуктов, использующихся для диагностики, а также методы биодеградации удобрений и пестицидов. В гл. 13 описаны способы крупномасштабного культивирования генетически измененных микроорганизмов с целью получения коммерческих продуктов. Часть. III посвящена молекулярной биотехнологии растений и животных (гл. 14 и 15). Гл. 16 и 17 знакомят читателя с применением технологии рекомбинантных ДНК для идентификации генов человека, ответственных за развитие некоторых заболеваний, и подходами к генной терапии. В последней, IV части рассмотрены вопросы регламентации исследований в области молекулярной биотехнологии, оформления патентов на различные продукты и изобретения. [c.10]


    Что такое эндонуклеазы рестрикции типа II и почему они так важны для технологии рекомбинантных ДНК  [c.79]

    Молекулярная биотехнология как новая область исследований сформировалась в конце 1970-х гг. на стыке технологии рекомбинантных ДНК и традиционной промышленной микробиологии. Современное общество неплохо осведомлено о проблемах молекулярной биотехнологии. Так или иначе об этой науке знают практически все. Кто-то видел фильм Парк Юрского периода с его потрясающими, искусно нарисованными, но соверщенно несостоятельными с научной точки зрения клонированными динозаврами. Кто-то прочитал в газетах о том, что на рынке появились новые, биотехнологические помидоры с большим сроком хранения. А кто-то слышал рассуждения критически настроенного знатока о страшных последствиях генной инженерии, ожидающих нас в будущем. В этой книге мы попытаемся объяснить, что собой представляет эта научная дисциплина на самом деле, как проводятся биотехнологические исследования и как они могут повлиять на нашу жизнь. [c.9]

    Достижения в области молекулярной биологии и молекулярной генетики позволили биотехнологам начиная с 70-х годов прошедшего столетия перейти от слепого отбора штаммов мутантов к сознательному конструированию геномов, используя для этой цели прогрессивную технологию рекомбинантной ДНК. [c.34]

    Разрешена к применению в Европе первая вакцина дтя животных, полученная по технологии рекомбинантных ДНК [c.18]

    Технология рекомбинантных ДНК оказала существенное воздействие на всю клеточную биологию, позволяя решать такие за- [c.106]

    Генно-инженерные методы, в частности технология рекомбинантных ДНК, позволяют создавать новые генотипы и, следовательно, новые формы растений гораздо быстрее, чем классические методы селекции. Кроме того, появляется возможность целенаправленного изменения генотипа — трансформации — благодаря введению определенных генов. [c.144]

    Книга Молекулярная биотехнология принципы и применение написана как учебник по биотехнологии, технологии рекомбинантных ДНК и генной инженерии. В ее основу положен курс лекций по биотехнологии, который мы читали на протяжении 12 лет студентам старших курсов и аспирантам биологических и инженерных специальностей Университета Ватерлоо. Книга предназначена для студентов, знакомых с основами биохимии, молекулярной генетики и микробиологии, хотя мы понимаем, что вряд ли они успели освоить все эти дисциплины до того, как начали заниматься биотехнологией. Поэтому, приступая к изложению той или иной темы, мы сначала рассматриваем ее основы и лишь затем переходим к деталям. [c.9]

    Главное внимание в книге уделено тому, как с помощью технологии рекомбинантных ДНК можно создавать нужные человеку продукты. Там, где это возможно, мы старались проиллюстрировать основные теоретические концепции конкретными результатами и методиками, уже применяющимися на практике. Из лавинообразного потока научных публикаций мы выбирали в качестве примеров те работы, которые не только иллюстрируют определенные положения, но и формируют у читателя твердую научную базу, позволяющую ему ориентироваться в узкоспециальных вопросах молекулярной биотехнологии. Конечно, мы понимаем, что эта область исследований развивается чрезвычайно быстро и некото- [c.9]

    Очень часто научные работники — неважно, о какой области науки идет речь, — в повседневном общении, на конференциях, в ходе переписки используют специфическую терминологию, проще говоря, жаргон. Мы старались обойтись без него и во многих случаях намеренно давали словесное описание явления или процесса там, где, прибегая к лаконичному жаргону, мы могли бы сэкономить немало слов. Для описания одного и того же явления в любой области исследований существуют синонимы. Так, термины технология рекомбинантных ДНК , клонирование генов и генная инженерия очень близки по смыслу. Когда в тексте впервые появлялся важный термин, мы давали в скобках его синоним или эквивалентное выражение. Освоить терминологию читателю поможет большой словарь терминов в конце книги. [c.10]

    Стратегия переноса функциональной единицы наследственности (гена) из одного организма в другой была разработана американскими учеными Стэнли Коэном и Гербертом Бойером в 1973 г. И Коэну, и Бойеру, и многим другим было ясно, что технология рекомбинантных ДНК предоставляет огромные возможности. Как в то время отмечал Коэн, ...есть надежда, что удастся ввести в [бактериальную клетку] Е. соН гены, ассоциированные с метаболическими или синтетическими функциями, присущими другим биологическим видам, например гены фотосинтеза или продукции антибиотиков . [c.16]

    Бойер и Коэн положили начало технологии рекомбинантных ДНК [c.18]

    В 1973 г. Стэнли Коэн и Герберт Бойер с сотрудниками разработали способ переноса генетической информации из одного организма в другой. Этот метод, получивший название технологии рекомбинантных ДНК, позволил ученым вьще-лять конкретные гены и вводить их в организм нового хозяина. Технология рекомбинантных ДНК стимулировала развитие различных областей науки, но прежде всего она создала необходимые предпосылки для появления биотехнологии. [c.22]

    Молекулярная биотехнология сразу захватила воображение общества. При участии частного капитала было создано много мелких компаний, занимающихся генным клонированием (технологией рекомбинантных ДНК). Правда, на то, чтобы предложить свою продукцию рынку, этим компаниям потребовалось времени несколько больше, чем ожидалось, но уже сейчас множество биотехнологических продуктов имеется в продаже и еще больше появится в ближайшем будущем. [c.22]


    За десять лет, прошедших после обнародования теории двойной спирали ДНК и принципа комплементарности, раскрыты молекулярные механизмы репликации ДНК установлены процессы, отвечающие за расшифровку генетической информации и регуляцию синтеза генных продуктов выяснены многие причины, по которым эти продукты синтезируются в измененном виде. Со времени выхода в свет этой публикации и до наших дней открытие Уотсона и Крика нисколько не утратило своего значения. В частности, если бы не была установлена структура ДНК, сейчас не существовало бы технологии рекомбинантных ДНК. [c.45]

    Технология рекомбинантных ДНК включает целый набор экспериментальных процедур, благо- [c.77]

    Генетическая инженерия имеет яркую историю благодаря тому общественному резонансу, который она вызвала с самых первых своих шагов. Начало этим событиям положило послание участников Гордоновской конференции (1973) президиуму АН США, в котором говорилось о возможной опасности технологий рекомбинантных ДНК для здоровья человека. Возможные блага генетической инженерии признавались с самого начала, но разногласия по данной проблеме не затихли и сейчас. В табл. 5.1 перечислены основные этапы становления и развития генетической инженерии. [c.105]

    Технология рекомбинантных ДНК включает набор как новых методов, так и заимствованных из других дисциплин, в частности из генетики микроорганизмов. Эти методы существенно расширяют возможности генетических исследований. Используя технологию рекомбинантных ДНК, получают даже минорные клеточные белки в больших количествах и проводят тонкие биохимические исследования структуры и функций белков, а также осуществляют детальный химический анализ генетического материала. К наиболее важньпм методам биотехнологии рекомбинантных ДНК следует отнести следующие  [c.106]

    В конце 70-х годов XX в. на основе технологии рекомбинантной ДНК получили гормон роста микробного происхождения. Было показано, то ГР оказывает такое же стимулирующее действие на лактацию и рост животного, как и гипофизарный ГР. Гормон роста, полученный с помощью методов генетическсШ инженерии, при крупномасштабном применении вызывал уветачение удоев на 23 — 31 % при дозе 13 мг в день. Разработаны формы препарата пролонгированного действия, позволяющие использовать его один раз в две недели и даже в месяц. При ежедневной инъекции ГР молодняку крупного рогатого скота, свиней и овец удалось увеличить суточные привесы на 20 — 30% при значительном сокращении расхода кормов на единицу прироста. У молодняка свиней с ускорением роста увеличивалось содержание белка и уменьшалось содержание жира в тканях, что повышало качество мясопродуктов. [c.129]

    Векторы на основе ДНК-содержанщх вирусов растений. Вирусы можно рассматривать как разновидности чужеродной нуклеиновой кислоты, которые реплицируются и экспрессируются в клетках растений. Подавляющее большинство фитовирусов в качестве носителя генетической информации содержат РНК. Только 1 — 2 % вирусов, инфицирующих растения, относятся к ДНК-содержа-щим. Именно эти вирусы удобны для использования в технологии рекомбинантных ДНК, а также в качестве векторов. [c.147]

    Головокружительный взлет стоимости акций компании Genente h предопределялся как реальной оценкой потенциала технологии рекомбинантных ДНК, так и мечтами о будущих возможностях. Многие думали, что новая технология станет тем рогом изобилия XX века, который напоит и накормит всех желающих. Эти мечты подпитывались энтузиазмом газетных и журнальных публикаций и телевизионных репортажей, подо-февались активностью биржевых брокеров и на-учно-фантастическими сюжетами. Воображение будоражили полчища удивительных микробов, растения и животные, созданные человеком. Энтузиасты предрекали, что генноинженерные микробы вытеснят химические удобрения, будут уничтожать разливы нефти появятся растения с передающимися по наследству устойчивостью к вредителям и исключительно высокой питательной ценностью будут созданы сельскохозяйственные животные, более эффективно усваивающие пищу, быстро прибавляющие в весе и дающие нежирное мясо. Казалось, что коль скоро конкретные биологические свойства обусловливаются одним или несколькими генами (единицами наследственности), создание организмов с новым генетическим устройством не составит труда. И в самом деле, хотя шумиха, поднятая вокруг новой технологии, была не совсем адекватной, увлечение этой идеей имело основания. Прошло немногим более пятнадцати лет, и многие наиболее разумные проекты стали реальностью. В своей книге мы расскажем о том, как это произошло и каковы перспективы применения технологии рекомбинантных ДНК. [c.15]

    С развитием технологии рекомбинантных ДНК природа биотехнологии изменилась окончательно и бесповоротно. Появилась возможность оптимизировать этап биотрансформации более прямым путем, создавать, а не просто отбирать высокопродуктивные штаммы, использовать микроорганизмы и эукариотические клетки как биологические фабрики для производства инсулина, интерферона, гормона роста, вирусньгх антигенов и множества других белков. Технология рекомби-нантньгх ДНК позволяет получать в больших количествах ценные низкомолекулярные вещества и макромолекулы, которые в естественных условиях синтезируются в минимальных количествах. Растения и животные стали естественными биореакторами, продуцирующими новые или изме- [c.18]

    На стыке технологии рекомбинантных ДНК и биотехнологии возникла новая область исследований, динамичная и высококонкурентоспособная, — молекулярная биотехнология. Эта молодая дисциплина, как и молекулярная биология в период своего становления, весьма амбициозна, заявляемые ею притязания не всегда соответствуют реальным возможностям. Ее стратегия и экспериментальная база претерпевают быстрое изменение, одни подходы все время вытесня- [c.18]

    Биотехнология в значительной мере нацелена на получение с помощью микроорганизмов продуктов, имеющих коммерческую ценность. До эпохи рекомбинантных Д НК самым эффективным методом повышения продуктивности организмов был мутагенез с последующей селекцией оптимального штамма-продуцента. Это длительный, трудоемкий, высокозатратный и небезошибочный процесс, позволяющий улучшить лишь немногие из присущих природному организму свойств. В то же время технология рекомбинантных ДНК - это быстродействующий, эффективный, мощный инструмент, обеспечивающий создание микроорганизмов с заранее заданными генетическими характеристиками. Более того, этот инструмент может работать не только с микроорганизмами, но также с растениями и животными. Союз технологии рекомбинантных ДНК и биотехнологии породил очень динамичную, исключительно интересную дисциплину - молекулярную биотехнологию. [c.22]

    Предпосылками к созданию технологии рекомбинантных ДНК послужили многие открытия в области молекулярной биологии, энзимо- [c.50]


Смотреть страницы где упоминается термин Технология рекомбинантных: [c.181]    [c.177]    [c.15]    [c.21]    [c.21]    [c.50]    [c.51]    [c.53]    [c.55]    [c.57]    [c.59]    [c.61]    [c.61]    [c.61]    [c.63]    [c.65]    [c.67]    [c.69]    [c.71]    [c.73]    [c.75]    [c.77]    [c.79]    [c.105]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.15 , c.50 , c.51 , c.52 , c.53 , c.54 , c.55 , c.56 , c.57 , c.58 , c.59 , c.60 , c.61 , c.62 , c.63 , c.64 , c.65 , c.66 , c.67 , c.68 , c.69 , c.70 , c.71 , c.72 , c.73 , c.74 , c.75 , c.76 , c.77 ]




ПОИСК







© 2025 chem21.info Реклама на сайте