Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Живая материя

    Приблизительно четвертая часть атомов всей живой материи приходится на долю кислорода. Поскольку общее количество атомов кислорода в природе неизменно, по мере удаления О2 из воздуха в результате дыхания и других процессов должно происходить его пополнение. Важнейшими источниками кислорода в неживой природе являются СО2 и Н2О. Упрощенная схема кругооборота кислорода в окружающей среде представлена на рис. 21.14. На этой схеме показаны пути удаления Oj из атмос- [c.304]


    Возникновение органических соединений в природе без участия живой материи (т. е. в те времена, когда на Земле еще не было жизни) называется абиотическим процессом в отличие от биотического процесса — возникновения органических соединений внутри живых клеток, [c.10]

    Накопленные в Х /П1 столетии знания показали химикам, что судить о природе веществ, исходя только из их горючести или негорючести, нельзя. Вещества неживой природы могли выдерживать жесткую обработку, а вещества живой или некогда живой материи такой обработки не выдерживали. Вода кипела и снова конденсировалась в воду железо или соль расплавлялись, но, остывая, возвращались в исходное состояние. В то же время оливковое масло или сахар при нагревании (даже в условиях, исключающих возможность горения) превращались в дым и гарь. То, что оставалось, не имело уже ничего общего с оливковым маслом или сахаром, и превратить этот остаток в оливковое масло или сахар больше не удавалось. Словом, вещества этих двух групп вели себя принципиально различным образом. [c.69]

    Атмосфера - естественная внешняя газообразная оболочка Земли, которая обеспечивает физиологические процессы дыхания, регулирует интенсивность солнечной радиации, служит источником атмосферной влаги и средой, поглощающей газообразные продукты жизнедеятельности живых организмов. Поэтому состав, температура, характер перемещения воздушных масс в атмосфере являются необходимыми условиями существования на Земле живой материи. Воздействие промышленного производства на атмосферу приводит к изменению ее состояния загрязнению вредными веществами, шумами и электромагнитными излучениями, снижению количества кислорода, разрушению озонового слоя. [c.8]

    Позднее американский биохимик Фокс описал экспериментальные условия, в которых термическая конденсация смеси аминокислот приводила к образованию полимеров. Такие смеси полипептидов образовывали в соленой воде проте-ноидные микросферы и проявляли в присутствии АТР многие черты поведения, характерного для клеток. Фактически капли Опарина и Фокса вели себя как термодинамически открытые системы. Это составляет одно из фундаментальных свойств живой материи. [c.188]

    Следует отметить, что концепцию порядка-беспорядка возможно распространить с успехом от неживой к живой материи. Эта специальная область биофизики интенсивно развивается в последнее время. С позиции порядок-беспорядок освещаются некоторые вопросы современного естествознания и проблемы космо- [c.173]

    Задача 6.7. Предположим, на одной из планет системы Тау Кита обнаружена жизнь. Правда, всего лищь в виде планктона. Автоматы доставили на Землю образцы воды с крохотными (50—100 микрон) комочками живой материи. Сразу же возникла задача как наблюдать инопланетян в микроскоп, если они находятся в постоянном броуновском движении Посмотришь в микроскоп и ничего не разглядишь тау-китяне, как сказано у поэта, то явятся, то растворятся ... [c.100]


    Вода вызывает набухание коллоидов, она связывается с белком и другими органическими соединениями, а также с ионами, входящими в состав клеток и тканей. Вместе с углекислым газом вода в процессе фотосинтеза вовлекается в образование органических веществ и, таким образом, служит материалом для создания живой материи на Земле. [c.46]

    Вода играет на нашей планете роль важнейшего растворителя. Трудно даже представить себе, как могла бы существовать во всей своей сложности живая материя, если бы эту роль вместо воды играла какая-нибудь иная жидкость И дело не только в изобилии воды, но и в ее исключительной способности растворять самые разнообразные вещества. Водные растворы, встречающиеся в природе, будь то биологические жидкости или морская вода, содержат в себе много растворенных веществ. Следовательно, в этих растворах может осуществляться множество равновесий. В гл. 15 мы обсуждали равновесия с участием слабых кислот и оснований. Однако мы ограничили свое рассмотрение растворами, содержащими только одно растворенное вещество. В данной главе будут рассмотрены кислотно-основные равновесия в водных растворах, содержащих два или несколько растворенных вешеств. Кроме того, мы расширим наше изучение равновесий в водных растворах, включив в обсуждение другие типы реакций, в частности реакции, в которых участвуют слабо растворимые соли. [c.110]

    Наряду с углеродом, водородом и кислородом азот и фосфор являются непременными компонентами живой материи. Эти пять элементов, лежащие в основе всех структур растительного и животного происхождения, иногда объединяют общим названием органогены (рождающие жизнь). [c.87]

    Высокомолекулярные соединения (ВМС) — как природные, составляющие основу -всей живой материи, так и синтетические — вещества, образованные из цепных макромолекул с молекулярны.м весом от нескольких тысяч до нескольких миллионов. Они построены пз небольших групп (звеньев) атомов, соединенных химическими связями. Разнообразие физических свойств аморфных и кристаллических ВМС определяется химическим составом макромолекул (от него зависит способ их укладки для образования конечных структур) и температурой. Макромолекулы образуют цепи разнообразных равновероятных геометрических форм — конформаций, которые возникают благодаря свободному вращению звеньев [c.284]

    Наряду с закрытыми системами существуют открытые системы, в которых осуществляется обмен веществом с окружающей средой. Такие системы используют в некоторых случаях при проведении химических реакций. К ним относятся живые организмы, начиная с простейших одноклеточных. Общеизвестно, что неотъемлемой чертой живой материи является обмен веществ, т. е. поступление в организм продуктов питания, а в огромном числе случаев также и кислорода, и вывод из организма вредных продуктов метаболизма В открытых системах изменение количества молей каждого компонента складывается из двух частей — изменения в результате химического процесса и изменения при переносе вещества через границу системы. [c.167]

    Таким образом, нуклеиновые кислоты вместе с белками являются носителями важнейших биологических функций и они определяют все те признаки, которые отличают живую материю от неживой, а именно обмен веществ, способность реагировать на изменения окружающей среды и, наконец, воспроизводимость. [c.629]

    Это свойство сопряженных реакций играет исключительно важную роль в живой природе. Например, синтез важнейщих компонентов живой материи — белков и нуклеиновых кислот соответственно из аминокислот и нуклеотидов сопровождается существенным увеличением энергии Гиббса. Эти процессы становятся возможными потому, что протекают сопряженно с гидролизом аденозинтрифосфорной кислоты (АТФ), который сопровождается существенным уменьшением энергии Гиббса, перекрывающим ее рост при синтезе указанных полимеров. Наоборот, образование АТФ из продуктов ее гидролиза, сопровождающееся увеличением энергии Гиббса, происходит сопряженно с окислением органических соединений (идущим с существенным уменьшением энергии Гиббса). [c.391]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]


    По Прелогу [44], возможное объяснение состоит в том, что возникновение жизни было чрезвычайно маловероятным событием, случившимся только однажды. Тогда мы можем допустить, что, если на некоторой отдаленной планете имеются живые существа, подобные нашим, их молекулярная структура, возможно, является зеркальным двойником того, что есть на Земле. На молекулярном уровне у нас нет сведений о том, почему живые организмы предпочитают один вид хиральности другому. Однако такие причины могут существовать на уровне атомных ядер. Существует громадное число книг по нарушению аналогий на ядерном уровне (см., например, [39]). Конечно, после того как первоначальный выбор уже сделан, его последствия должны быть рассмотрены в рамках первого вопроса. Однако факт остается фактом, и хиральность весьма тесно связана с жизнью. В свою очередь это означает, что по крайней мере диссимметрия и, возможно, асимметрия являются фундаментальными характеристиками живой материи. [c.76]

    После второй мировой войны Ленинджер (США) и другие авторы сделали очень много для развития учения о консервировании энергии в доступной использованию форме на путях окислительного фосфорилирования. Таким образом, наука пришла к теории одной из важнейших биогенных функций фосфора [7], но проблема неисчерпаемо сложна, а сведения о конкретно протекающих в живой клетке реакциях до сих пор неполны. Тем увлекательнее, несомненно, перспективы дальнейшего исследования и открытий тайн живой материи. [c.336]

    Органическая химия — химия соединений углерода. Это очень большая область химии в литературе описано уже более миллиона различных органических соединений. Многие из этих веществ выделены из живой материи, а еще большее число их синтезировано химиками в лабораториях. [c.355]

    Хотя Пастер и верил, что процессы, протекающие в живой и неживой природе, разделяет пропасть, он все-таки приписывал асимметрию живой материи не жизненной силе , а асимметричному строению Вселенной. Пастер был склонен думать, что жизнь, как она нам представляется, должна быть следствием диссимметрии Вселенной [45]. [c.76]

    Хотя а-стераны обычно присутствуют во всех нефтях, не менее значительны и концентрации стереохимически измененных углеводородов, так как синтезированный живой материей 5а-эпимер термодинамически менее стабилен,.,Особенно неблагоприятным является транс-сочленеише циклов /D, поскольку в системе ангуляр-но замещенного гидриндана значительно более устойчйвы углеводороды с i u -сочленением циклов. [c.115]

    Действие электрического тока на организм человека очень сложно, оно может быть тепловым (ожог), механическим (разрыв тканей, повреждение костей), химическим (электролиз), биологическим, (нарушение биотоков, свойственных живой материи, с которыми связана ее жизнеопособность). [c.18]

    Одной из причин эволюции неживой и живой материи является рост энтропии поликомпонентности. В квазиизолированной системе эта величина возрастает самопроизвольно, либо остается постоянной. [c.65]

    Вторая половина XX столетия характеризуется резко возросшим интересом к познанию механизмов жизнедеятельности. Эпоха наблюдения и достаточно поверхностного анализа мира животных, растений и микроорганизмоп сменилась периодом решительного проникновения на уровень молекулярных и межмолеку-лярных взаимодействий в живых системах, вторжением в биологию методов и подходов физики, химии и математики. Как следствие этого процесса началась постепенная дифференциация наук, изучающих материальные основы жизни стали одна за другой появляться новые дисциплины, отражающие различные уровни исследования живой материи, различные углы зрения, различные экспериментальные приемы и методологические концепции. Классическая биохимия, которой бесспорно принадлежит пальма первенства в симбиозе биологии и точных наук, постепенно уступала дорогу новым направлениям. Вначале, на волне революционных событий в физике, возникла биофизика, значительно окрепшая уже в предвоенный период. Конец этого этапа был ознаменован и резкой активизацией исследований в генетике. Однако наиболее серьезное наступление началось в начале 50-х годов, когда возникли молекулярная биология, рождение которой часто отождествляется с открытием двойной спирали ДНК, а также биоорганическая химия, первые победы которой по праву связывают с установлением структуры инсулина и синтезом первого пептидного гормона — окситоцина, [c.5]

    Химическая эволюция началась примерно 4,6 0,1 млрд. лет тому назад, и лищь этот процесс, не считая биологической эволюции, занял примерно 1,5 млрд. лет [42]. Нас особенно интересует тот период химической эволюции, во время которого образовались сложные органические молекулы, превратившиеся затем в живую материю. [c.181]

    Для проведения лабораторных исследований необходимо знать условия реакций, протекавших на первобытной. Земле, нричем следует отмстить, что ни белки, ни нуклеиновые кислоты не образуются самонроизвольно в нодны.ч растворах [47]. Самоконденсация формальдегида, другого возможного иредшест-венника живой материи, должна была бы привести к образованию сахаров, причем в присутствии СН4 реакция протекает через стадию фотолиза воды. [c.185]

    Имаотся и другие основания. Например, наличие специфических свойств - они горят, образуют живую материю, используются ею и т.д. Громадное же число органических соединений заставляет предполагать наличие у углерода и водорода каких-то уникальных особенностей. И они есть. Из всех элементов периодической системы только у углерода и водорода на всех валентных орбиталях находится по одрому вален-таому электрону. Это позволяет им легко образовьшать устойчивые в условиях нашей планеты химические связи. [c.12]

    Огромный интерес представляют вещества, которые образуют живую материю или используются ею. Из всех элементов именно углерод играет главную и определяющую роль в биологическом мире, пос-кэльку специфические и химические свойства невероятно сложных со-ед шений углерода обеспечивают способность биологических объетсгов быть живыми . Таким образом, органическую химию можно рассматривать как своеобразный мост от неживой природы к высшей ее форме - жизни. [c.12]

    Материалы на основе углерода занимают особое место в различных отраслях народного хозяйства благодаря сочетанию жаропрочности, механической прочности при высоких температурах, химической стойкости в агрессивных средах, фрикционным, антифрикционным, электрическим свойствам. Это единственные в природе вещества, способные увеличивать свою гфочность с возрастанием темнера туры. Сочетание прочности стали с легкостью пластмасс, непревзойденная жаростойкость, биологическая совместимость с живой материей (искусственный клапан сердца, протезы суставов и костей) все это позволяет создавать на основе углеродных материалов уникальные детали сложнейшей конфигурации, область применения которых простирается от медицины до космоса. [c.5]

    Не менее важную функцию выполняет фосфор, входящий в состав аденозинфосфорных кислот, в процессах постоянного энергетического обмена клетрк живого организма. Аденозинфосфорные кислоты помогают запасать и постепенно расходовать энергию за счет окислительно-восстановительных процессов. Фосфор в виде кристаллических соединений типа фосфата кальция служит строительным материалом костных тканей высших животных фосфором богаты наиболее развитые формы живой материи — нервная и мозговые ткани. [c.88]

    Особое место среди всех полимерных материалов занимают природные биополимеры — белки, нуклеиновые кислоты, клетчйтка, обладающйе рядом очень специфических, уникальных свойств, благодаря которым они выполняют важнейшие функции живой материи — осуществляют постоянный материальный и энергетический обмен с окружающей средой, регулярно воспроизводят сложнейшие химико-биологические структуры живого организма. [c.128]

    Лецитин и другие фосфолипиды в водной фазе образуют двойной слой из обращенных наружу фосфорилхолиновых или других аналогично построенных фрагментов и направленных друг к другу гидрофобных областей (рис. 87). Такой слой получил название фосфолипидной мембраны. Фосфолипидные мембраны являются важнейшим структурным элементом живой материи —они отделяют содержимое клетки от окружающей водной фазы, ядро от цитоплазмы, создают многочисленные внутриклеточные перегородки. [c.314]

    Еще в 1932 г. Мильс в связи с обсуждением проблемы возникновения первых оптически активных органических веществ обратил внимание на то, что рацемичность — понятие статистическое. В действительности, чем меньше число образующихся молекул с асимметрическим атомом углерода, тем больше вероятность того, что соотношение L/D не будет равно единице. Модельным доказательством справедливости этого являются результаты опытов по кристаллизации хлората натрия, проведенных еще в 1898 г. Киппингом и Поупом. Это вещество может образовывать право- или левоориентированные кристаллы, причем лишь в двух опытах из 46 образовывался действительно рацемический конгломерат (50% кристаллов правой и 50% кристаллов левой формы), в остальных же 44 опытах доля (- -)-кристаллов составляла от 24 до 77%. Средняя же доля (- -)-кристаллов во всех 46 опытах составила 50,08 + 0,11%, т. е. точно отвечала рацемическому соотношению. Таким образом, при образовании малого числа молекул, вошедших впоследствии в состав живой материи, вполне можно было ожидать перевеса одной из антиподных форм с последующим закреплением и усилением этого перевеса в процессе дальнейших химических и биохимических превращений. [c.658]

    Белки, или протеины, получили свое название от греческогс слова рго1е1оз — первичный, так как эти вещества встречаются во всех формах живой материи. Некоторые белки играют роль опорных структур в живых организмах, другие транспортируют жиры в кровеносной системе, являются гормонами, ферментами, переносчиками кислорода иэ легких в ткани. Так как все белки построены из аминокислот и при гидролизе дают смесь аминокислот, прежде всего будет рассмотрена химия этих структурных звеньев. [c.643]


Смотреть страницы где упоминается термин Живая материя: [c.70]    [c.257]    [c.341]    [c.4]    [c.46]    [c.195]    [c.407]    [c.100]    [c.398]    [c.12]    [c.186]    [c.571]    [c.554]    [c.178]    [c.15]    [c.13]   
Симметрия глазами химика (1989) -- [ c.13 , c.45 , c.76 ]




ПОИСК







© 2025 chem21.info Реклама на сайте