Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эукариотические клетки

    Структурная организация генетического материала в эукариотических клетках обусловлена следующими его биологическими функциями. Во-первых, ДНК в ядрах конденсируется примерно в i0 раз к моменту митоза, а затем быстро деконденсируетх я, [c.233]

    Геном эукариот обеспечивает сложнейшие программы развития и клеточной дифференцировки, которые осуществляются в результате последовательной активации и инактивации множества генов, взаимодействующих друг с другом. Эукариотическая клетка содержит во много раз больше генов, чем прокариотическая. Ниже приведено содержание ДНК в разных организмах (п. н. в расчете на гаплоидный геном)  [c.185]


    Транскрипция в эукариотических клетках [c.223]

    Важные моменты контроля метаболизма связаны с пространственной организацией клетки. У бактерий периплазматическое пространство (гл. 5, разд. Г) изолировано от цитозоля, и ферменты, локализованные в этом пространстве, не смешиваются с другими ферментами клетки. Ряд ферментов локализован в мембране или прикреплен к ней. Эукариотические клетки имеют больше изолированных отсеков, чем бактериальные это ядра, митохондрии (включающие их внутреннюю полость и межмембранное пространство), лизосомы, микротельца и вакуоли. Еще один ограниченный мембранами отсек — это цитозольные канальцы и пузырьки эндоплазматического ретикулума. [c.68]

    Синтез многих ферментов в клетке, по-видимому, почти все время подавлен. Появление специфических ферментов в тот или иной момент времени в организме или в определенной дифференцированной ткани происходит в результате дерепрессии, вызываемой накоплением специфических метаболитов или другими, пока неизвестными факторами. В эукариотических клетках контроль за синтезом ферментов может осуществляться как на уровне транскрипции, так и на уровне трансляции. [c.66]

    В эукариотических клетках относительное содержание (концентрация) рибосом меньше, и их количество очень сильно варьирует в зависимости от белоксинтезирующей активности соответствующей ткани или отдельной клетки. Основная масса рибосом локализована в цитоплазме (рис. 29). В клетках с интенсивной секрецией белка и развитой сетью эндоплазматического ретикулума значительная часть цитоплазматических рибосом прикреплена к его мембране на поверхности, обращенной к цитоплазматическому матриксу в некоторых частях ретикулума их может быть много, в то время [c.50]

    Возможно, аналогичная регуляция степени компартментализации на полирибосомах существует также в случае другого фактора элонгации, EF-1. Л. П. Овчинниковым с сотр. было обнаружено, что поли-рибосомная фракция эукариотической клетки содержит латентную фосфокиназу, которая в определенных условиях может активироваться и специфически фосфорилирует а-субъединицу EF-1 в результате EF-1 утрачивает свое неспецифическое сродство к высокомолекулярным РНК и покидает полирибосомы. Нельзя исключить того, что фосфорилирование EF-la может оказывать влияние на скорость элонгации и служить для регуляции трансляционного процесса в клетке. [c.220]

    Как уже обсуждалось выще (см. гл. B.V), в эукариотических клетках скорость элонгации, а не только инициации трансляции, может подвергаться регуляторным воздействиям, причем эти воздействия тоже могут быть как избирательными, так и тотальными. [c.259]

    Идея о том, что синтез белков на мембраносвязанных рибосомах сопряжен с трансмембранным транспортом белков, возникла из наблюдений по тесной ассоциации растущих полипептидных цепей с мембраной шероховатого эндоплазматического ретикулума в эукариотических клетках или с внутренней цитоплазматической мембраной бактерий. Транслирующие рибосомы оказались прочно заякоренными на мембране растущим пептидом, и лишь обработка пуромицином, приводящая к аборту пептида из рибосомы, позволяла диссоциировать комплекс на интактные рибосомы и мембраны, оставляя пептид в мембране. Таким образом, стало ясно, что существенный вклад в ассоциацию транслирующей рибосомы с мембраной вносит сам растущий пептид. В бактериях разрыв этого якоря пуромицином приводит к немедленному освобождению рибосом от мембраны, откуда делается вывод, что растущие пептиды являются единственным прочным соединением полирибосом с цитоплазматической мембраной. [c.275]


    Молекулы предшественников зрелых клеточных РНК подвергаются расщеплению и химической модификации. Совокупность биохимических реакций, в результате которых уменьшается молекулярная масса РНК-предшественника и осуществляются разные способы химической модификации с образованием зрелых молекул РНК, называют процессингом. Процессинг наблюдается и в прокариотических клетках, но особенно аюжны превращения предшественников клеточных РНК в ядрах эукариот. Хромосомы эукариотической клетки, в которых осуществляется транскрипция, локализованы в ядре и отделены двойной ядерной мембраной от цитоплазмы, где протекает трансляция. В ядре синтезируются предшественники всех типов цитоплазматических РНК- Зрелые молекулы РНК транспортируются в цитоплазму. Механизм транспорта РНК из ядра в цитоплазму исследован недостаточно. Полагают, что процессинг РНК с образованием зрелых молекул продолжается и в ходе их транспорта в составе рибонуклеопротендных частиц через поры ядерных мембран. В клетках эукариот только незначительная часть, около 10%, транскрибируемых в ядре последовательностей ДНК выяыяется в составе цитоплазматических мРНК. Основная часть новообразованной РНК распадается в ядре и не обнаруживается в цитоплазме. [c.163]

    При исследовании реассоциации ДНК эукариотической клетки выявляются аномалии кинетики реакции (рис. 107, б). Например, на кривой реассоциацин ДНК из тимуса теленка можно различить ступеньки, которые отражают отдельные этапы реакции. Первая ступенька указывает на наличие быстро ренатурирующей фракции 1 (25 % ДНК). Следующая соответствует фракции 2, ренатурирующей со средней скоростью (30 % ДНК) и, наконец, остальная часть ДНК (45 %), предстаменная фракцией 3, ренатурирует медленно. Количество ДНК во фракции может быть определено исходя из значения oiVj. Так, например, значение для фракции 2 (1,9) Почти в 5 раз ниже ее значения для ДНК Е. соИ. В таком случае сложность фракции 2 составляет всего 10 п. н. В то же время коли- [c.187]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующегоэлемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов (5У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. П2, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на З ч )ланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]

    Наследственный аппарат эукариотических клеток существенно отличается от прокариотических хромосом. Наиболее очевидное отличие — огромное количество ДНК в эукариотических клетках. Например, гаплоидный геном человека состоит из З-Ю пар ос-иований (п. о.), тогда как геном . соИ включает всего 10 п. о. Кроме того, геном эукариот разделен на несколько хромосом, которые претерпевают характерные циклы конденсаций и декон-Денсаций в ходе деления клеток. Наконец, в клетках эука-РНот больше генов и их регуляция значительно сложнее, чем у прокариот. [c.233]

    Представление о доменной организации хромосом эукариот было первоначально гипотезой, выдвинутой по аналогии с хорошо установленной доменной структурой бактериального нуклеотида. Хромосома в Е. oli существует в клетке в виде более или менее компактной структуры. Она состоит из нескольких десятков независимых суперспирализованных петель, которые могут релаксировать по отдельности. Суперспирализованное состояние ДНК, обладающее повышенной энергией, поддерживается в клетках бактерий ферментом ДНК-гиразой, использующим энергию АТФ. В эукариотических клетках этот фермент до сих пор не обнаружен, несмотря на многочисленные попытки его найти. [c.246]

    Масса рибосом Е. соИ составляет приблизительно 2,7-10 дальтон около 65% ее веса приходится на долю РНК, остальные 35%—на белок. В эукариотических клетках масса рибосом больше, чем в бактериальных, приблизительно в 1,6 раза (4,3-10 дальтон). При определенных условиях, и в частности при низкой концентрации ионов Mg2+, цельные рибосомы (для бактерий это 708-рибосомы) диссоциируют на две субчастицы неодинакового размера — 30S- и 505-рибо-сомные субчастицы. 508-субчастица приблизительно в два раза больше 308-субчастпцы в ее состав входят две молекулы РНК (23S и 5S) (табл. 15-4). Меньшая (30S) субчастица содержит одну молекулу 16S-PHK, полинуклеотидная цепь которой включает 1700 нуклеотидов ее длина (если ее целиком распрямить) может превысить 500 нм. Нуклеотидная последовательность этой РНК полностью расшифрована.  [c.227]


    В то же время известно, что как в прокариотических, так и в эукариотических клетках часть рибосом, организованных в полирибосомы, является свободными (хотя в эукариотах они, повидимому, связаны с каким-то цитоскелетом ), а другая часть прикреплена к мембранам. В прокариотах полирибосомы могут сидеть на внутренней стороне цитоплазматической мембраны клетки, в то время как в эукариотах местом размещения мембраносвязанных рибосом является так называемый шероховатый эндо-плазматический ретикулум цитоплазмы прикрепленные рибосомы могут продуцировать Лептид непосредственно в мембрану. Соответственно, в зависимости от локализации рибосом, ко-трансляцион-ное внерибосомное сворачивание растущего полипептида может происходить либо в водной среде цитоплазмы, либо в гидрофобном окружении липидного бислоя мембраны. [c.274]

    Если в быстро растущей бактерии синтез ДНК происходит. практически непрерывно, то в эукариотических клетках репликация занимает значительно более ограничениую часть клеточного цнйсла [1-67].  [c.263]

    Каково происхождение гена tox и почему он переносите вирусом Паппенхеймер и Джил высказали предположение что этот ген каким-то образом образовался из гена эукариотической клетки, кодирующего функциональный белок. Этот ген внедрился в вирус и в ходе эволюции трансформировался в ген, детерминирующий синтез белкового токсина. Наличие в клеточном ядре поли (ADP-рибозы) (разд. И, 3) позволяет предложить одну из возможностей появления гена tox. NAD+ служит субстратом при синтезе этого ядерного полимера, а синтетаза катализирует разрыв рибозилникотинамидной связи с образованием новой гликозидной связи между 1-углеродом рибозы и 2-гидроксильной группой аденозина следующей мономерной единицы. Возможно, что именно ген синтетазы в результате модификации трансформировался в ген дифтерийного токсина. [c.306]

    В клетке для каждой из 20 аминокислот, которые участвуют в построении белка, существует своя аминоацил-тРНК-синтетаза. Таким образом, в прокариотических клетках существует 20 различных ами-ноацил-тРНК-синтетаз. Однако в эукариотических клетках ситуация сложнее, и в первую очередь из-за существования специальных амино-ацил-тРНК-синтетаз в хлоропластах и митохондриях (в дополнение к основным цитоплазматическим синтетазам). [c.29]

    Все рибосомы цитоплазматического матрикса (как мембраносвязанные, так и свободные) образуются в ядрышке эукариотической клетки и соответственно обнаруживаются также в этом ком-партменте клеточного ядра считается, что в ядрышке они не активны. [c.52]

    Кроме того, эукариотическая клетка имеет специальные рибосомы в таких внутриклеточных органеллах, как митохондрии и, в случае растений, хлорпласты. Рибосомы этих органелл отличаются от цитоплазматических рибосом слегка меньшими размерами, другим химическим составом и некоторыми функциональными свойствами. Они образуются непосредственно в органеллах. [c.52]

    Хотя тетрациклины не действуют на эукариотические клетки из-за непроницаемости их мембран для антибиотика, в эукариотических бесклеточных системах они тоже оказываются сильными ингибиторами, подавляя связывание аминоацил-тРНК с 80S рибосомами. [c.166]

    Некоторые другие бактериальные токсины. Экзотоксин А Pseudomonas aeruginosa обладает подобным же механизмом действия, что и дифтерийный токсин. Этот белок с молекулярной массой 71500 дальтон тоже взаимодействует с поверхностью эукариотической клетки своим лектиновым доменом, погружается в мембрану, там расщепляется на фрагменты А и В с молекулярными массами 27000 [c.216]

    Действительно, недавно в нормальных клетках млекопитающих была открыта эндогенная АДФ-рибозилтрансфераза, которая специфически модифицирует дифтамидный остаток в ЕР-2. Фермент ассоциирован с полирибосомами, т. е. присутствует в том же клеточном компартменте, который содержит факторы элонгации ( в случае эукариотической клетки). Функция эндогенного АДФ-рибозилирования ЕР-2, возможно, состоит в воздействии на активность ЕР-2, отличную от катализа транслокации. Известно, что АДФ-рибозилирование ЕР-2 дифтерийным токсином приводит к утрате неспецифической РНК-связывающей способности ЕР-2 и, следовательно, к [c.219]

    Имеющиеся сведения сводятся в основном к двум группам фактов. Во-первых, известно много случаев, когда имеет место избирательная дискриминация мРНК как результат разной эффективности ( силы ) инициации благодаря каким-то (неизвестным) чертам структуры 5 -концевого и инициирующего района матриц. Сюда относятся, по-видимому, также случаи подавления трансляции хозяйских мРНК при одновременной высокоэффективной трансляции вирусных РНК в вирусинфи-цированных эукариотических клетках. Во-вторых, четко продемонстрирована возможность тотальной регуляции (подавления) синтеза белка в клетке за счет модификации ключевого фактора инициации —е Р-2. [c.257]


Смотреть страницы где упоминается термин Эукариотические клетки: [c.184]    [c.186]    [c.207]    [c.209]    [c.89]    [c.199]    [c.206]    [c.215]    [c.223]    [c.223]    [c.237]    [c.237]    [c.253]    [c.122]    [c.27]    [c.496]    [c.7]    [c.41]    [c.214]    [c.216]    [c.220]    [c.244]    [c.246]    [c.257]   
Биологическая химия (2002) -- [ c.23 ]

Молекулярная биология клетки Том5 (1987) -- [ c.34 , c.35 , c.36 , c.37 , c.38 , c.39 , c.40 , c.41 ]

Возможности химии сегодня и завтра (1992) -- [ c.181 ]

Гены (1987) -- [ c.22 ]

Происхождение жизни Естественным путем (1973) -- [ c.34 , c.144 , c.155 , c.285 , c.285 , c.313 , c.313 , c.314 , c.314 , c.341 ]

Цитология растений Изд.4 (1987) -- [ c.11 , c.34 , c.37 , c.48 , c.55 , c.66 , c.67 , c.71 , c.88 ]

Переключение генов (1988) -- [ c.140 , c.141 ]

Гены и геномы Т 2 (1998) -- [ c.49 , c.50 , c.70 , c.164 , c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Актин и миозин служат сократительными элементами почти во всех эукариотических клетках

Все эукариотические клетки содержат набор основных ограниченных мембраной органелл

Генетический материал эукариотических клеток упакован очень сложно

ДНК-полимераза эукариотических клетках

Жгутики эукариотических клеток

Интеграция геном эукариотической клетки

Интеграция геном эукариотической клетки вирусов

Клеточный эукариотической клетки

Клонирование ДНК-копий эукариотических матричных РНК и их экспрессия в клетках Экспрессия в Е. oli химико-ферментативно синтезированных ген-эквивалентов эукариотических полипептидов

Культуры эукариотических клеток

Микрокосм эукариотической клетки

Органеллы эукариотических клеток

Организация генома. Клетки Е. oli Эукариотические клетки

Организация и функционирование. эукариотической клетки

Основные черты организации эукариотических клеток

Особенности биосинтеза эукариотических рекомбинантных белков в бактериальных клетках тельца включения

Открытие ядерной дРНК в эукариотических клетках

Прокариотические сравнение с эукариотическими клетками

Пути развития фага X и развитие эукариотических клеток возможные аналогии

РНК в эукариотических клетках синтезируется тремя различными РНК-полимеразами

Репликация в эукариотических клетках протекает особенно сложно

Симбиотическая гипотеза происхождения эукариотической клетки

Скелет эукариотических клеток

Транскрипция в эукариотических клетках

Фосфокреатин - форма запасания Актин и миозин служат сократительными элементами почти во всех эукариотических клетках

Цитоплазма эукариотических клеток

Экспрессия клонированных эукариотических генов в клетках

Экспрессия хромосомных эукариотических генов в клетках

Эукариотическая клетка эуцит

Эукариотические гены могут транскрибироваться в бактериальных клетках

Эукариотические клетки Ядерная зима

Эукариотические клетки зависят от митохондрий, осуществляющих окислительный метаболизм

Эукариотические клетки имеют скелет

Эукариотические клетки ископаемые

Эукариотические клетки развитие

Эукариотические клетки регуляторный белок

Эукариотические клетки содержат гораздо больше ДНК, чем прокариоты

Эукариотические клетки содержат множество различных внутренних мембран

Эукариотические клетки содержат также цитоплазматическую Гены-это участки ДНК, которые кодируют полипептидные цепи и РНК

Эукариотические клетки, гены

Ядра эукариотических клеток содержат три РНК-полимеразы



© 2025 chem21.info Реклама на сайте