Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотидный код

    Ацетил — СоА -Ь фосфата Ацетилфосфат -Ь СоА. (5.43) В табл. 13 приведены данные по влиянию СоА на начальную скорость реакции (5.43) при вариации концентраций обоих субстратов. Определить тип ингибирования коферментом по отношению к нуклеотидному (Ацетил — СоА) и неорганическому субстрату и вычислить соответствующие константы ингибирования. [c.92]

    В природе синтез белков всегда направлен на формирование определенной первичной структуры и протекает в водных средах при обычных температурах в соответствии с универсальным генетическим кодом под влиянием специфических ферментов. Основная схема этого процесса в настоящее время уже известна. Всю генетическую информацию, обеспечивающую формирование определенной первичной структуры полипептидных цепей и макромолекул белка, несут важнейшие биополимеры, относящиеся к классу сложных полиэфиров, - нуклеиновые кислоты. Эта информация определяется последовательностью соединения друг с другом различных нуклеотидных оснований - звеньев этого полимера. [c.349]


    Ароматические соединения, нуклеиновые кислоты и нуклеотидные коферменты [c.304]

    Согласно той же формуле (18.4) коэффициент диффузии обратно пропорционален вязкости растворителя. Поэтому особенно высокого качества разделения удается достигнуть, проводя электрофорез в гелях, вязкость которых чрезвычайно высока. Для разделения белков и нуклеиновых кислот наиболее широко используются полиакриламидные гели (см. 8.5). С помощью электрофореза в таких гелях удается в один прием разделить десятки компонентов. В качестве иллюстрации на рис. 91 приведен результат разделения смеси фрагментов нуклеиновой кислоты разной длины от 40 до 72 нуклеотидных звеньев. Электрофорезу подвергались фрагменты, меченые радиоактивным фосфором После завершения разде- [c.331]

    Генетическая информация, необходимая для управления синтезом белков со строго определенной структурой, закодирована нуклеотидной последовательностью цепи ДНК. [c.664]

    Рибонуклеиновые кислоты (РНК, т. е. содержащие рибозу) образованы одной поли нуклеотидной цепочкой, которая скручена так, что образуется значительное количество коротких спиральных участков (рис. 77) — это вторичная структура РНК. [c.181]

    По отношению к нуклеотидному субстрату кофермент А является конкурентным ингибитором с константой ингибирования, [c.104]

Рис. 46. Применение координат Диксона для определения константы конкурентного ингибирования коферментом А реакции фосфотрансацетилирования, катализируемой фосфат-ацетилтрансферазой. Концентрации нуклеотидного субстрата (Ацетил-СоА) (а) 1,25-10-< М (б)—8.5Х X 10-5 м (в) —3,5-10-5 м Рис. 46. <a href="/info/1590510">Применение координат</a> Диксона для <a href="/info/829285">определения константы конкурентного</a> ингибирования коферментом А реакции фосфотрансацетилирования, катализируемой <a href="/info/612132">фосфат-ацетилтрансферазой</a>. Концентрации нуклеотидного субстрата (Ацетил-СоА) (а) 1,25-10-< М (б)—8.5Х X 10-5 м (в) —3,5-10-5 м
    С самого начала мы исходили из того, что молекулы ДНК содержат очень большое число нуклеотидов, соединенных в регулярную линейную цепь. И здесь наши рассуждения частично основывались на соображениях простоты. Хотя химики-органики в соседней лаборатории Александра Тодда считали, что именно таким и должно быть расположение нуклеотидной основы молекулы, они были еще далеки от того, чтобы химическим путем установить идентичность всех связей между нуклеотидами. Но если это не так, то как же в таком случае молекулы ДНК могут укладываться в кристаллические агрегаты, изучаемые Морисом Уилкинсом и Розалинд Фрэнклин Поэтому мы решили, пока не зайдем в тупик, считать строение сахаро-фосфатного остова весьма регулярным и искать такую спиральную пространственную конфигурацию, при которой все группы этого остова имели бы одинаковое химическое окружение. [c.37]


    Из характера межнуклеотидной связи следует также, что нуклеиновые кислоты — это неразветвленные полимеры. Лишь в очень редких случаях (они относятся, как правило, к промежуточным продуктам биосинтеза РНК) 2 -гидроксильная группа нуклеотидных остатков может использоваться для образования дополнительной фосфодиэфирной связи (ем. гл. VIH, раздел 4). [c.11]

    Эти ц аналогичные факты (образование 5 -нуклеотидов при действии определенных ферментов на рибонуклеиновую кислоту) дают основание предполагать, чго в нуклеиновых кислотах соединение отдельных мононуклеотидов осуществляется иутем этерификации 2 -, 3 - и 5 -гидроксилов рибозы с одновременным сильным разветвлением нуклеотидной цепи, согласно следующей схеме  [c.1049]

    В тесной связи с нуклеотидами находятся нуклеиновые кислоты, занимающие ключевое положение в биологии клеток, С химической точки зрения эти кислоты представляют собой полинуклеотиды, так как их молекулы состоят из связанных друг с другом нуклеотидных звеньев (разд. 7.6). Кроме того. [c.207]

    В соответствии с известной моделью Уотсона и Крика [27] нуклеиновые кислоты образуют двойную спираль, состоящую из двух цепей, в которых гетероциклические основания одной цепи связаны водородными связями с основаниями другой цепи. При этом всегда оказываются связанными друг с другом остаток аденина с остатком урацила или остаток гуанина с остатком цитозина. Обе комбинации очень близки по размерам, поэтому несмотря на их чередование поли-нуклеотидная цепь имеет высокую пространственную регулярность. [c.646]

    Двойная спираль структуры ДНК. Каждый полный виток спирали содержит приблизительно 10 нуклеотидных фрагментов [c.320]

    Молекулы РНК не ассоциируют в пары с образованием аналогичной двойной спирали. Значительный объем дополнительной гидроксильной группы в углеводном фрагменте ограничивает конформационную гибкость полинуклеотидной цепи РНК. Главным образом эта гидроксильная группа определяет способность фермента различать ДНК и РНК. Внутри молекулы РНК могут образоваться короткие стержнеобразные двойные спиральные структуры за счет свертывания частей одной и той же нуклеотидной цепи. [c.321]

    Многие коферменты имеют в своем составе нуклеотидные фрагменты, которые, по-видимому, с химически активными цепями кофермента не взаимодействуют, но могут адсорбироваться на поверхности молекулы фермента. При рассмотрении действия коферментов обратим особое внимание на химические аспекты их активности. [c.322]

    Флавинадениндинуклеотид (FAD) состоит из нуклеотидного фрагмента, соединенного с рибофлавином. Это еще один слу- [c.327]

    Нуклеиновые кислоты, как и белки, обладают первичной структурой (под которой понимается и последовательность чередования нуклеотидных остатков) и трехмерной структурой (вторичной, третичной, четвертичной). [c.662]

    Фрэнсис Крик устроен совсем иначе. Профессионал в структурном анализе, он был уверен в верности их с Уотсоном работы. Кроме того, как ни важна структура ДНК, его интересовали и другие проблемы молекулярной биологии. Отсюда разные пути этих людей в дальнейшем. Крик продолжал плодотворно работать гипотеза о существовании особой РНК, перекодирующей нуклеотидные последовательности в белковые доказательство в изящном эксперименте триплетности генетического кода построение молекулярной модели изломов в ДНК... [c.132]

    Кратко уже указывалось, что все молекулы тРНК имеют сходную структуру, прежде всего одинаковую тринуклеотидную последовательность на конце молекулы, содержащем З -гидрок-сильную группу (цитидин-цитидин-аденозин). Аминокислота образует сложный эфир с 3 (2 -)-гидроксильной группой этого остатка аденозина. На противоположном конце молекулы тРНК (петля) находится нуклеотидный триплет, который служит уча- [c.116]

    Конечно, как и в случае образования пептидной связи, затрачивается определенная энергия, и поэтому необходима активация. Синтез фосфодпэфирной связи был бы невозможен при простом смешивании фосфорной кислоты с соответствующими защищенными нуклеозидами. Наконец (см. ниже), может потребоваться даже блокирование фосфатной группы. Хотя это не строго необходимо (и не применялось в первых нуклеотидных синтезах), такой метод имеет свои преимущества и в настоящее время наиболее распространен. [c.154]

    Ацнлирование первичной и вторпчиой гидроксильных групп нуклеозидов чаще всего проводят, обрабатывая нуклеозид ангидридом или хлорангидридом кислоты в пиридине. В зависимости от реакционной способности и условий проведения реакции может также происходить ацилирование экзоциклических аминогрупп, если они присутствуют в гетероциклическом основании (см. выше). Помимо обычных ацильных групп (формильной, ацетильной, бензоильной, хлораце-тильной и т. д.), удаляемых чаще всего в щелочных условиях, предложен ряд ацильных групп, условия удаления которых делают их пригодными для нуклеотидного синтеза. [c.159]

    Новейший обзор, посвященный использованию фотоактивируемых защитных групп в органическом (аминокислотном, нуклеотидном) синтезе, см. работу [362]. [c.166]


    Белки (аминокислотные полимеры) и нуклеиновые кислоты (нуклеотидные полимеры) — это основа жизни. Ферменты — это белки, катализирующие химические реакции, необходимые для процессов жизнедеятельности, тогда как нуклеиновые кислоты служат банком данных — хранилищем генетической информации, сосредоточенной в клеточном ядре. В заключение этой главы мы кратко рассмотрим происхождение этих биополимеров. С этой целью сформулируем некоторые фундаментальные вопросы, на которых следует ниже остановиться. С чего начались химические процессы, необходимые для поддержания жизни, или, другими словами, каким образом происходило образование пептидных связей в пребиотическпй период Как появились макромолекулы, имеющие важное биологическое значение Чем вызвана асимметрия и хиральность органическ гх молекул На некоторые из этих вопросов хотя бы частично сумели ответить химики, пытавшиеся воспроизвести условия, которые существовали в примитивной атмосфере Земли того времени. [c.181]

    В рибонуклеиновой кислоте дрожжей содержатся адениловая, гуаниловая, цитидиловая и уридиловая кислоты (Левин). Из тимонуклеиновой кислоты выделены гуаниловая кислота, аденин-, тимин- и цитозиннуклеотиды. Порядок расположения оснований в различных нуклеиновых, кислотах различен. Каким образом отдельные нуклеотидные остатки соединены друг с другом — выяснено лишь частично возможно, что не во всех нуклеиновых кислотах они связаны одинаково. [c.1048]

    В РНК в группе сахара вместо группы Т стоит группа и (ура-цил—С4Н402Н2). Установлено существование нескольких функционально различных типов РНК внутри каждой клетки — рибо-сомальная РНК, растворимая РНК, информационная или матричная РНК нуклеотидный состав этих РНК различен. 68 [c.68]

    ДНК и РНК представляют собой полимеры, основное повторяющееся мономерное звено которых называется нуклеотидом. Чтобы разобраться в структуре этих полимеров, следует сначала ознакомиться со структурой нуклеотидных звеньев. Нуклеотид состоит из трех остатков 1) остатка молекулы фосфорной кислоты, 2) остатка сахара в фуранозной форме (пятичленный цикл) и 3) остатка азотсодержащего органического основания с циклической структурой, подобной циклической структуре ароматических молекул. Сахар, входящий в состав РНК, представляет собой рибозу, структура которой показана на рис. 25.14. В ДНК входит сахар дезок-сирибоза, отличающийся от рибозы только тем, что один из его атомов углерода вместо группы —ОН связан просто с атомом водорода, как это видно из рис. 25.14. В молекуле ДНК нуклеотид содержит любое из четырех органических оснований, показанных на рис. 25.15. На рис. 25.16 в качестве примера изображена структура одного полного нуклеотида (дезоксиадениловой кислоты), образованного из всех трех составляющих. Замещение аденина в этой структуре на одно из трех остальных оснований позволяет получить все четыре нуклеотида, из которых построены молекулы ДНК. [c.461]

    Все эти взаимодействия мало отражаются на энергии молекулы—никакого (или почти никакого) дополнительного вклада в устойчивость молекулы они не вносят ( несвязывающие взаимодействия). Тем не менее их существование придает молекуле ДНК особые свойства. В частности, при действии УФ-излучения в одной точке молекулы ДНК возможна миграция энергии возбуждения вдоль нуклеотидной цепи. Если возбужденное состояние достигает точки, в которой по тем или иным причинам нарушена правильная структура или ослаблены нормальные связи, может произойти разрыв молекулы ДНК и разделение двойной спирали. Л1еханизмы подобного рода, как считают, имеют большое значение в развитии мутаций, вызванных слабым и кратковременным воздействием излучений. [c.355]

    Из этих веществ Эйген строит са-мовоспроизводящийся гиперцикл . Модель цикла состоит из ряда нуклеотидных последовательностей — комплементарных цепей РНК (Ь) с ограниченной длиной цепи. Цепи кодируют одну или две активные полипептидные цепи (Ег). Каждый нуклеотидный коллектив способен к комплементарному инструктированию и состоит из двух ветвей ( положительной и отрицательной ), взаимновоспроизводящих друг друга. Процесс воспроизведения специфично катализируется предшествующей полипептидной цепью Е,-1, которая, в свою очередь, кодируется нуклеотидной цепью 1,-1. Полипептидная ветвь В,-, по мысли Эйгена, может выполнять различные функции она [c.384]

    При изучении ДНК рентгенографическим методом было установ-лерю, что макромолекулы имеют строго регулярное строение, а химическое исследование показало, что число пиримидиновых оснований всегда равно числу пуриновых аденина всегда столько, сколько тимина цитозина столько же, сколько гуанина. Объяснение этим фактам дали Д. Уотсон и Ф. Крик в своей модели двойной спирали (1953 г.). Двойная спираль (рис. 25) похожа на винтовую лестницу. Две стойки этой лестницы образованы основной цепью, состоящей из углеводных и фосфатных остатков, азотистые основания образуют как бы ступеньки лестницы. Азотистое основание одной поли нуклеотидной цепи связано водородными связями с азотистым основанием другой цепи  [c.352]

    Более сложной проблемой является синтез гетероолигонуклеотидов с заданной последовательностью нуклеотидных звеньев. В этом случае задача состоит в последовательном наращивании определенных звеньев на каждом этапе наращивания молекулярной цепи исходные соединения должны быть монофункциональны, что исключает гомополиконденсацию. [c.366]

    Другой метод, называемый триэфирным , отличается тем, что в качестве нуклеотидной компоненты в конденсацию вводят диэфир фосфорной кислоты и реакцию проводят в присутствии хлорангидридов ароматических сульфокислот  [c.367]

    Аналогичная последовательность встречается и в ДНК, где углеводом является 2-дизокси- о-рибоза. Нуклеотидный фрагмент, содержащий в качестве основания тимин, имеет следующую структуру  [c.318]

    Тесно связан с АТР еще один нуклеотидный кофермент — аденозин-3, 5 -монофосфат ( циклический АМР ), который образуется из АТР под действием фермента аденилатциклазы. [c.324]

    В. Кон и сотр.), когда было установлено строение их мономеров — нуклеозидов и нуклеотидов, и доказано, что и в ДНК, и в РНК нуклеотидные остатки связаны только 3 —5 -фосфодиэфирной связью. К этому же времени с помощью бумажной хроматографии были выяснены основные закономерности нуклеотидного состава ДНК и РНК (Э. Чаргафф и сотр.). В частности, было показано, что в ДНК аденин и тимнн, гуанин и цитозин всегда содержатся в равных количествах это имело принципиальное значение при установлении ее макромолекулярной структуры. [c.6]

    Открытие генетической роли ДНК потребовало решения другой фундаментальной задачи — проблемы кода, с помощью которого нуклеотидный текст переводится на язык аминокислот — структурных еднниц белка. Впервые эту задачу правильно сформулировал в начале 1950-х годов Г. Гамов, который предсказал, что этот код должен быть трехбуквенными неперекрывающимся. Экспериментально общие свойства генетического кода были установлены Ф. Криком, С. Бреннером и сотр. к концу 1950-х — началу 1960-х годов. К этому же времени в общих чертах были выяснены функции и принципы структурной организации РНК. Были от- [c.6]

    В середине 1960-х годов начались исследования нуклеотидных последовательностей РНК. Первыми были определены первичные структуры тРНК (Р. Холли и сотр., 1965 А. А. Баев и сотр., 1967). Развитие техники фракционирования фрагментов нуклеиновых кислот и прежде всего гель-электрофореза (Ф. Сэнгер и сотр.) позволило в начале 1970-х годов приступить к изучению первичной структуры высокомолекулярных РНК. В 1976—1978 гг. были созданы исключительно быстрые и эффективные методы секвени-рования ДНК и РНК (А. Максам и У. Гилберт, Ф. Сэнгер и сотр.), которые позволили за короткое время получить огромную информацию о первичной структуре генов, их регуляторных элементах, вирусных и рибосомных РНК и т. д. [c.7]


Смотреть страницы где упоминается термин Нуклеотидный код: [c.62]    [c.264]    [c.83]    [c.117]    [c.164]    [c.332]    [c.217]    [c.322]    [c.325]    [c.169]    [c.139]    [c.11]   
Биологическая химия (2004) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте