Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эукариотические организмы

    Развитие многоклеточных эукариотических организмов основано на способности клеток передавать в ряду поколений активное или, наоборот, репрессированное состояние гена. Наследование состояния гена приводит в конечном итоге к образованию дифференцированной ткани, состоящей из клеток, в которых лишь небольшая часть генов активирована на фоне репрессии основной части генома. Исследование молекулярных механизмов, обеспечивающих наследование активного или неактивного состояния гена в ряду клеточных поколений, представляется чрезвычайно важным. По-видимому, в основе этих механизмов лежат не только программированные взаимодействия белков и ДНК, обеспечивающие наследуемую локальную организацию хроматина, но и процессы метилирования ДНК. Метилирование можно расс.матривать как особый механизм контроля транскрипции, существующий наряду с механизмами, основанными на взаимодействиях между цис-действую-щими регуляторными элементами и факторами транскрипции. [c.218]


    Генетика эукариотических организмов [c.263]

    Никакой универсальной стратегии оптимизации экспрессии клонированных генов не существует. Больщинство таких генов имеют уникальные молекулярные свойства, и оптимальные системы экспрессии для каждого из них приходится подбирать всякий раз заново. Эффективность экспрессии любого чужеродного гена зависит также от его родства с организмом-хозяином. Несмотря на то что многие представители как про- так эукариотических организмов способны [c.105]

Рис. 123. Схема последовательности событий трансляции у эукариотических организмов. Рис. 123. Схема <a href="/info/166669">последовательности событий трансляции</a> у эукариотических организмов.
    При хищничестве, присущем только эукариотическим организмам, жизнь партнера-жертвы ограничена во времени, то есть здесь ассоциация организмов кратковременная [c.235]

    Половой процесс у эукариот. Первый этап полового размножения --слияние клеток. Две клетки, участвующие в этом процессе, называются гаметами, а образующаяся в результате их слияния клетка — зиготой. У всех эукариотических организмов после слияния гамет происходит слияние их ядер, поэтому ядро зиготы содержит два полных набора генетических детерминантов — по одному из каждого ядра гаметы. [c.50]

    Клеточная инженерия — одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта — изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности — уникальном свойстве растительных клеток. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях, клеточная дифференцировка, морфогенез, реализация тотипотентности клеток, механизмы появления раковых клеток и др. При решении практических задач основное внимание уделяется вопросам селекции, получения значительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др. [c.158]


    У эукариотических организмов ДНК локализована преимущественно в ядрах клеток у прокариот она образует довольно компактный нуклеоид, в котором содержится вся хромосома бактериальной клетки. Такие клеточные органеллы, как митохондрии и хлоро-пласты, имеют свою собственную ДНК- Кроме того, в цитоплазме многих прокариот и низших эукариот обнаруживаются внехромо-сомные ДНК — плазмиды. [c.10]

    Цитоплазма клеток всех эукариотических организмов, включая [c.52]

    Уже отмечалось выше (раздел 3 этой главы), что в 23S РНК бактерий самый 5 -конец цепи спарен с ее З -концом (совершенная стабильная спираль из 8 нуклеотидных пар). Соответственно, в рибосомах хлоропластов высших растений 5 -конец 23S РНК спарен в такую же спираль с З -концом 4,5S РНК. В рибосомах эукариотических организмов З -конец высокомолекулярной 28S РНК, по-видимому, спарен с самым 5 -концом 5,8S РНК. [c.89]

    Цитохромы типа с могут способствовать выявлению эволюции метаболических путей. Цитохромы с вводят нас в обширную область прокариотов. В принципе структуры этих белков можно использовать для установления определенного порядка среди бактерий таким же образом, как митохондриальные цитохромы с были применены в таксономических целях к эукариотическим организмам. Первые попытки такой классификации бактерий уже сделаны [509, 571]. Однако, поскольку в бактериях может осуществляться переход межродового гена [507, 508], построение филогенетического дерева затрудняется генами, которые переходят из одной ветви в другую. [c.227]

    Для построения подробных генетических карт некоторых эукариотических организмов, таких как мышь, кукуруза, плодовая мушка, нематоды и дрожжи, необходимо идентифицировать целый ряд генов, каждый из которых представлен по крайней мере двумя аллелями. Затем нужно провести скрещивания и подсчитать частоту рекомбинаций у большого числа потомков. Результаты отражают степень сцепления между [c.446]

    Половое размножение является наиболее типичным для эукариотических организмов, особенно для многоклеточных. Сперматозоид и неоплодотворенное [c.24]

    Сложные капсиды присущи и бактериофагам, например, Т-четным oli-фагам (см рис 1а), у которых имеется икосаэдрическая головка и гексагональный отросток В таблице 6 приведен перечень некоторых вирусов прокариотических и эукариотических организмов с различными типами симметрии капсидов [c.81]

    Код, данный на рис. 3, является универсальным для белоксинтези-рующих систем бактерий и цитоплазмы всех эукариот, включая животных, грибы и высшие растения. Однако в живой природе имеются также и исключения. По крайней мере белоксинтезирующие системы митохондрий животных (млекопитающих) и грибов обнаруживают ряд отклонений от этого универсального кода. Так, в митохондриях изученных эукариотических организмов триптофан кодируется как UGG, так и UGA соответственно, UGA не является терминирующим кодоном. В митохондриях млекопитающих (человека) кодоны AGA и AGG — терминирующие и не кодируют аргинин. В митохондриях дрожжей вся кодоновая семья UU, U , UA и UG кодирует треонин, а не лейцин (хотя в митохондриях другого гриба, Neurospora, они кодируют лейцин, в соответствии с универсальным кодом). [c.16]

    Итак, совокупность вышеперечисленных экспериментальных и теоретических подходов дала возможность построить модель вторичной структуры 16S РНК Е. oli, представленную на рис. 42. Почти идентичные модели получены для 16S РНК других бактерий, хлоропластов высших растений и архебактерий. Несмотря на больший размер и гораздо меньшую гомологию последовательности, цепи 18S РНК цитоплазматических 80S рибосом эукариотических организмов могут быть уложены в виде схемы вторичной структуры, очень сходной с таковой 16S РНК бактерий, но 18S содержит добавочные спирали и их группы (рис. 43). Рибосомные РНК уменьшенного размера, а именно 12S РНК митохондрий млекопитающих, также оказались гомологичны бактериальной 16S РНК основная схема их укладки во вторичную структуру совпадает с таковой 16S РНК [c.74]

    В клетках эукариотических организмов обнаружены четыре ДНК-полимеразы а, р, V и 6. ДН К-полимераза а считается основным ферментом ядерной репликации. Содержание этого фермента заметно возрастает во время S-фазы клеточного цикла, когда происходит активный синтез ДНК- Только эта ДНК-полимераза подавляется афидиколином — ингибитором синтеза ДНК эукариот. Фермент состоит из нескольких субъединиц разного размера. Например, у дрозофилы молекулярные массы субъединиц составляют 148, 58, 46 и 42 кД. Полимеразная активность присуща самой большой из субъединиц. Молекулярная масса нативной эукариотической ДНК-полимеразы а составляет около 500 кД. Так же как в случае ДНК-полимеразы IИ . o/ , эффективность и высокая процессивность работы полимеразы а зависят до дополнительных субъединиц, которые сами по себе полимеризующей активностью не обладают. Одна из субъединиц ДНК-полимеразы а оказалась ДНК-праймазой — ферментом, необходимым для инициации новых цепей ДНК (см. ниже) ассоциация с праймазой не характерна для ДНК-полимераз бактерий. [c.50]

    Существует ряд важных одноклеточных эукариотических организмов. К ним относят все Protozoa (амебы, инфузории и др.), дрожжи, одноклеточные водоросли,— например, хлореЛла. Внутреннее устройство эукариотической клетки несравнимо сложнее, чем у поокариотов. Главные особенности этих структур будут [c.23]


    Поскольку дрожжи представляют собой эукариотический организм, можно было бы ожидать, что гены различных эукариот, в том числе и те, которые содержат интроны, будут корректно экспрессироваться в дрожжевых клетках. Однако это не так. Например, экспрессия генов -глобнна кролика в дрожжах не происходит благодаря некорректности транскрипции и последующего сплайсинга РНК. Тем не менее, применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Такие клетки, подобно В. subtilis, секретируют значительное количество белков во внеклеточную среду, что используют также для секреции чужеродных белков. С этой целью к экспрессируемому гену присоединяется участок, кодирующий сигнальный пептид, обусловливающий секрецию и отщепляемый в ее процессе. В результате в клетке синтезируется белок, содержащий на N-конце сигнальный пептнд. Этот белок секретируется в окружающую среду. Таким образом были получены, например, штаммы дрожжей, секретирующие интерферон человека. [c.440]

    Цитохромоксидаза, расположенная в эукариотических организмах во внутренней мембране митохондрий, осуществляет перенос электронов от одноэлектронного донора — ферроцитохрома с к акцептору четырех электронов — молекулярному кислороду. Таким образом происходит восстановление кислорода до воды и окисление цитохрома с  [c.616]

    Фототропизм присущ и грибам (например, фикомицетам) и растениям Так называемые циркадные ритмы (от лат ir us — круг) связаны со сменой дня и ночи, иногда — с длительностью дня (фотопериодизм) Они контролируются у всех эукариотических организмов специальным внутренним механизмом, называемым физиологическими, или б и-ологическими часами [c.117]

    Генетический аппарат в клетках эукариот организован в форме нескольких линейных хромосом, в которых ДНК прочно связана с белками-гистонами, обеспечивающими упаковку и упорядочение ДНК в виде структурных единиц—н уклеосом (учитывая при этом "код упаковки хроматина" и экстраполируя его на клетки большинства эукариот) Так, в гаплоидной клетке Sa haromy es erevisiae содержится 17 хромосом, в каждой из которых детектировано 1000 кЬ и, следовательно, число генов могло бы достигать в такой клетке 11 ООО, для 23 хромосом в гаплоидной клетке человека, где в одной хромосоме содержится 125 ООО кЬ, число генов должно бы возрасти до 2 млн Предположительно близкое число генов могло бы оказаться в гаплоидных клетках кукурузы, где имеется 10 хромосом, в клетках кролика с 22 хромосомами, или мыши с 20 хромосомами Однако, в хромосомах эукариотических организмов содержится генов меньше, чем некодирующих участков (спейсеров, или разделителей), и также имеется масса сходных между собой фрагментов ДНК, повторяющихся десятки-сотни тысяч раз Вот почему, например, у человека лишь [c.176]

    Изменчивость прокариотов и эукариотов должна рассматриваться раздельно, так как прокариотам не свойствен тот ха-зактер изменчивости, который сопряжен с половым процессом. 3 то же время для грибов и водорослей (кроме синезеленых) как эукариотических организмов характерно множество возможностей, вытекающих из комбинации признаков родительских организмов при образовании диплоидных клеток в результате слияния гомозиготных и гетерозиготных гамет. [c.97]

    Подобные эксперименты были проведены и на многих других эукариотических организмах. В настоящее время создается впечатление, что все эукариотические хромосомы содержат повторяющиеся последовательности ДНК (повторы), в то время как у прокариот они, как правило, отсутствуют. Число высоко-и умеренноповторяющихся последовательностей варьирует у разных видов эукариот. [c.882]


Смотреть страницы где упоминается термин Эукариотические организмы: [c.50]    [c.52]    [c.98]    [c.207]    [c.95]    [c.219]    [c.244]    [c.208]    [c.52]    [c.98]    [c.207]    [c.107]    [c.307]    [c.208]    [c.256]    [c.418]    [c.422]    [c.53]    [c.47]    [c.267]    [c.33]    [c.34]   
Основы биологической химии (1970) -- [ c.240 , c.315 ]

Происхождение жизни Естественным путем (1973) -- [ c.311 , c.313 , c.314 , c.316 , c.344 ]




ПОИСК







© 2025 chem21.info Реклама на сайте