Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярное клонирование

    Технология рекомбинантных ДНК (ее называют также молекулярным клонированием или генной Инженерией) — это совокупность экспериментальных процедур, позволяющая осуществлять перенос генетического материала (дезоксирибонуклеиновой кислоты, ДНК) из одного организма в другой. Никакого единого, универсального набора методик здесь не существует, но чаще всего эксперименты с рекомбинантной ДНК проводят по следующей схеме (рис. 4.1). [c.50]


    Метод молекулярного клонирования [c.469]

    Как отмечается в разд. 9.6.3, в ряде случаев желательно иметь воз.можность быстро выделить провирусные последовательности из клеток млекопитающих путем молекулярного клонирования,— например, чтобы проанализировать структуру трансдуцированных последовательностей, если ретровирусный вектор использовался для удаления интронов из геномной ДНК-вставки [19]. Для решения этой задачи могут оказаться весьма полезными челночные векторные системы, облегчающие перенос рекомбинантов между животными и бактериальными клет ками. Такие векторы содержат эукариотическую область нача- [c.284]

    Этап 1. Выделение популяции ( 10 ) идентичных молекул ДНК. (Идентичные молекулы, естественно, обладают идентичными концевыми участками, нуклеотидной последовательностью и длиной.) Очевидно, что молекулярное клонирование и рестрикция являются наиболее эффективными методами получения такой популяции молекул. [c.45]

    С разработкой быстрых и недорогих методов химического синтеза одноцепочечных ДНК-фрагментов с заданной нуклеотидной последовательностью методология молекулярного клонирования и характеризации ДНК существенно изменилась. Химически синтезированные олигонуклеотиды можно использовать для конструирования целых генов или их фрагментов, для амплификации специфических фрагментов [c.80]

    Рассмотрим теперь более подробно, каким образом гены выделяют, вводят в клетки-хозяева, клонируют и осуществляют трансляцию с целью получения тех или иных продуктов. Слово клон имеет греческое происхождение и означает побег или черенок, применяемый для размножения растения. Оно используется в двух смыслах. Во-первых, под термином клонирование клеток понимают образование группы генетически идентичных клеток, развившихся из одной клетки, как это имеет место в случае линии иммуноцитов, настроенных на синтез определенного типа антител. Под термином же молекулярное клонирование или клонирование генов имеют в виду образование множества идентичных копий гена, полученных в результате репликации одного гена, введенного в клетку-хозяина. [c.983]

    Для более углубленного изучения представленных здесь проблем можно рекомендовать учебные пособия по промышленной микробиологии или биотехнологии. Генная инженерия (техника молекулярного клонирования, разд. 15.3.6) открыла и в этой области новые возможности для биотехнологии. [c.347]

    Известно, что в мейозе и в митозе хромосомы упорядоченно расходятся по дочерним клеткам с помощью аппарата веретена, микротрубочки которого обеспечивают растягивание дочерних хромосом или гомологов к разным полюсам. Микротрубочки веретена прикрепляются к специальному участку хромосомы — кинетохору. Это белковый комплекс, который собирается на специализированной последовательности хромосомной Ц.НК — центромере. Молекулярные основы функционирования кинетохора пока не ясны. Методы молекулярного клонирования позволили выделить центромеры хромосом дрожжей. Вставление этих последовательностей в способные реплицироваться молекулы ДНК обеспечивает правильную сегрегацию последних в митозе у дрожжей. В случае дрожжей-сахаромицетов центромеры оказались сравнительно короткими (100—200 п. н.) сегментами ДНК. Центромеры делящихся дрожжей значительно больше (несколько тысяч п. н.) и, видимо, напоминают своим строением центромеры высших эукариот. Механизм упорядоченной сегрегации хромосом эукариот станет понятен, когда выяснится, как связанные с центромерой кинетохорные белки взаимодействуют с аппаратом веретена. [c.72]


    X [260]. Аналогичным образом гены gfai-оперона Е. соН удалось включить при помощи фага % в геном вируса SV40. Важная особенность зтих методов состоит в том, что в них используется молекулярное клонирование новых комбинаций ДНК, включенных в бактериальную плазмиду [261]. Для этой цели были использованы плазмиды, способные к репликации в клетках Е. соИ. [c.295]

    При молекулярном клонировании важно, чтобы расщепление донорной и векторной ДНК происходило в строго определенньгх участках (сайтах) с образованием дискретного и воспроизводимого набора фрагментов. Если пропустить хромосомную ДНК через шприц с иглой малого диаметра или обработать ее ультразвуком, то мы получим фрагменты длиной от 0,3 до 5 т.п.н. К сожалению, в ходе этих простых операций разрывы двухцепочечных молекул происходят случайным образом, так что при каждой обработке препарата ДНК получается совершенно новый набор фрагментов. Молекулярное клонирование стало возможным только после вьщеления высокоспецифичных бактериальных ферментов, которые узнают определенные последовательности оснований в двухцепочечной молекуле ДНК и расщепляют обе цепи. Эти ферменты называются рест-рицирующими эндонуклеазами типа II. [c.50]

    Для осуществления молекулярного клонирования недостаточно одних только ферментов рестрикции. Во-первьгх, водородные связи между теми четырьмя основаниями, которые образуют липкие концы, недостаточно прочны, чтобы удержать два объединившихся фрагмента ДНК. Необходим какой-то инструмент для устранения разрыва в сахарофосфатном остове молекулы, т. е. для восстановления связи между 3 -гидроксильной концевой группой одной цепи и 5 -фосфатной группой другой. Таким инструментом является ДНК-лигаза бактериофага Т4. Этот фермент катализирует образование фосфо-диэфирных связей между концами полинуклеотидных цепей, которые уже удерживаются вместе благодаря спариванию липких концов. Кроме того, ДНК-лигаза Т4 сшивает тупые концы, которые сближаются друг с другом после того, как объединяемые фрагменты связываются с ферментом (рис. 4.6). Во-вторых, объеди- [c.55]

    Технологический прогресс в любой области науки всегда стимулирует ее дальнейшее развитие. С появлением новых технологий появляется возможность ставить новые эксперименты и облегчается проведение старых. Становление молекулярной биотехнологии как науки обязано целому ряду технологических разработок многие из них ныне широко применяются как в крупных исследовательских центрах, так и небольших научных коллективах. Теперь не составляет особого труда химически синтезировать одну молекулу ДНК, определить нуклеотидную последовательность другой и амп-лифицировать с помощью полимеразной цепной реакции третью. Все это стало возможным благодаря той информации, которая была получена в ходе основополагающих исследований как самой ДНК, так и механизма ее репликации. Эти экспериментальные подходы стали неотъемлемой частью молекулярного клонирования - процедуры, позволяющей выделять из ДНК нужные фрагменты, охарак-теризовывать их и производить с ними разнообразные манипуляции. [c.80]

    При молекулярном клонировании (рис. 15.21) используют плазмиды в качестве переносчиков (векторов) для введения в бактериальную клетку и репродукции в ней чужеродной ДНК, которая может быть даже эукариотического происхождения. Для этой цели плазмиду и соответствующую чужеродную ДНК обрабатывают специфической рестрикта-зой, например E oRL В результате из обоих препаратов ДНК [c.469]

    Принцип методики ПЦР ясен из рис. 5-89, В. В каждом цикле реакции необходимо сначала кратковременное нагревание ДНК для разделения двух цепей двойной спирали (1-й этап) Последующее охлаждение ДНК в присутствии большого избытка двух упомянутых ДНК-олигонуклеотидов приводит к специфической гибридизации этих олигонуклеотидов с комплементарными последовательностями ДНК (2-й этап). После отжига смесь инкубируют с ДНК-полимеразой и четырьмя дезоксииуклеозидтрифосфатами, в результате чего избирательно синтезируются те участки ДНК, которые располагаются книзу от затравки (3-й этап). Для эффективной амплификации ДНК требуется от 20 до 30 циклов реакции В каждом последующем цикле количество ДНК по сравпепию с предыдущим циклом удваивается Отдельный цикл занимает около 5 мин, поэтому при автоматизации всей процедуры для бесклеточпого молекулярного клонирования какого-либо фрагмента ДНК требуется несколько часов, гогда как обычные процедуры клонирования растягиваются на несколько дней [c.341]

    Настоящая книга представляет собой сборник методических разработок, охватываюш,ий широкий спектр современных подходов к молекулярному клонированию и экспрессии генетического материала. Сборник включает десять самостоятельных глав, написанных авторами, работаюш,ими в ведуш,их медикобиологических центрах США, Великобритании и ФРГ. [c.5]

    Для решения целого ряда задач желательно иметь способ, позволяющий легко выделять рекомбинантный провирус из инфицированных клеток путем молекулярного клонирования. В частности, это относится к использованию ретровирусных векторов для удаления интронов, так как клонирование провируса дает возможность после инфекциононго цикла получать кДНК-копии интересующего нас гена. Кроме всего прочего клонирование провируса наилучшим образом позволяет исследовать и подтвердить генетическую структуру любой ретровирусной конструкции после того, как она претерпела цикл вирусной репликации. Клонирование провирусов включает обычные генноинженерные манипуляции, в том числе создание геномной библиотеки и ее скрининг гибридизационными методами. Однако заметим, что это непростая задача ввиду того, что обычно лишь одна копия искомого провируса присутствует в клеточном геноме. [c.300]

    За последнее десятилетие удалось осуществить молекулярное клонирование и характеризовать структуру множества генов млекопитающих. Функциональное содержание и механизмы регуляции этих генов исследуются теперь в экспериментах по переносу генетического материала. Рекомбинантные конструкции на основе последовательностей дикого типа или их мутантных производных вводят путем трансфекции в культивируемые клетки [I] для того, чтобы идентифицировать г ис-действующие регуляторные элементы и изучить физиологические последствия экспрессии генных продуктов. Однако,, даже если для интересующего гена и существует подходящая культивируемая тканевая система, возможности исследования генной экспрессии в таких экспериментах in vitro ограничены. В конце концов функции генов и закономерности их экспрессии следует изучать, исходя из сложности целого организма. Был разработан целый ряд методик, позволяющих вводить интересующие нас последовательности ДНК в клетки зародышевого пути мышей и других млекопитающих. Включившись в геном данного организма, такие чужеродные последовательности, называемые трансгенами, устойчиво наследуются в ряду поколений. Весьма важное значение имеет тот факт, что трансгены часто экспрессируются и вызывают изменения в системе тканевой специфичности, физиологических реакциях, а иногда во всей программе развития организма. Следовательно, открывается путь к изучению функциональной роли и регуляции экспрессии интересующих нас клонированных генов на уровне целого организма — в данном случае это так называемый трансгенный организм. [c.308]


    Методами молекулярного клонирования установлена аминокислотная последовательность рианодинового рецептора из СР скелетных мышц кролика (Takeshima et al., 1989) и человека (Zorzato et al., [c.89]

    При молекулярном клонировании гена и кДИК Р-адренергического рецептора млекопитающих выявились неожиданные особенности. Во-первых, оказалось, что в данном гене нет интронов и, следовательно, вместе с генами гистонов и интерферона он составляет единственную группу генов млекопитающих, лишенных этих структур. Во-вторых, удалось установить, что Р-адренергический рецептор имеет близкую гомологию с родопсином (по крайней мере в трех пептидных участках)—белком, инициирующим зрительную реакцию на свет. [c.225]


Библиография для Молекулярное клонирование: [c.177]   
Смотреть страницы где упоминается термин Молекулярное клонирование: [c.63]    [c.518]    [c.63]    [c.62]    [c.88]    [c.160]    [c.469]    [c.291]    [c.7]    [c.7]    [c.72]    [c.170]    [c.207]    [c.237]    [c.271]    [c.307]    [c.342]    [c.353]    [c.210]    [c.10]    [c.10]    [c.97]    [c.108]    [c.141]    [c.39]   
Смотреть главы в:

Биосенсоры основы и приложения -> Молекулярное клонирование


Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.191 ]

Биохимия Том 3 (1980) -- [ c.295 ]

Молекулярная биология (1990) -- [ c.191 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.983 ]

Гены и геномы Т 2 (1998) -- [ c.20 , c.203 , c.204 , c.210 , c.346 ]




ПОИСК







© 2024 chem21.info Реклама на сайте