Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Течения безвихревые осесимметричные

    Построение контура сверхзвуковых сопел основано на решении системы уравнений газовой динамики. При отсутствии необратимых процессов эта система для установившегося безвихревого осесимметричного (двумерного) течения невязкого и нетеплопроводного газа может быть записана в следующем виде  [c.170]

    При рассмотрении течений, инвариантных относительно преобразований (18) и (180, удобно пользоваться полярными (г, б) и сферическими (г, 0, ф) координатами. Пусть Иг и и — соответствующие радиальная и трансверсальная составляющие скорости. Мы рассмотрим лишь случай = О, т. е. случай отсутствия циркуляции в стационарном (безвихревом) плоском и осесимметричном течении. [c.168]


    Уравнения осесимметричного безвихревого течения идеального газа в ортогональной системе координат, связанной с линиями тока, имеют вид [c.128]

    До определенного предела теория развивается одинаково для плоскопараллельных и осесимметричных течений. Однако более богатая результатами (за счет более широкого группового свойства) теория плоскопараллельных течений излагается в этой главе и более детально. Для нее развивается один из основных методов изучения и решения конкретных задач о безвихревых течениях — метод годографа. Разработанный еще в начале текущего [c.217]

    Околозвуковое течение может быть чисто дозвуковым или чисто сверхзвуковым. Однако наибольший интерес представляют трансзвуковые течения, в которых происходит переход через скорость звука. Здесь будут рассматриваться именно такие гладкие околозвуковые течения в рамках модели плоскопараллельного безвихревого изэнтропического течения. Тем не менее надо иметь в виду, что многие из отмеченных ниже фактов и свойств верны и для осесимметричных течений (см. упражнения 20, 21). [c.287]

    Постановка вариационной задачи для плоскопараллельных и осесимметричных сверхзвуковых течений газа на основе полных нелинейных уравнений с использованием контрольного контура принадлежит Гудер-лею и Хантшу [3], которые рассмотрели задачу об оптимизации формы сопла Лаваля для случая стационарного течения несовершенного газа. Результаты этой работы приводят к краевой задаче для нелинейных обыкновенных дифференциальных уравнений, определяющих искомые функции на контрольном контуре. К тем же результатам при решении задач внешнего обтекания независимо пришли Зандберген и Валле [4]. Несколько раньше в работах [5, 6] было опубликовано решение ряда вариационных задач газовой динамики для внешних и внутренних сверхзвуковых течений совершенного газа. В этих работах решена краевая задача для нелинейных дифференциальных уравнений на характеристике контрольного контура. В случае безвихревых потоков решение представлено в явном виде. В случае вихревых течений решение сведено к задаче Коши для дифференциального уравнения. Стернин [7] обратил внимание на то, что в одной точке характеристики контрольного контура, построенной на основе необходимых условий экстремума, ускорение может стать бесконечно большим, и нашел геометрическое место таких точек в плоскости годографа скоростей. Это геометрическое место встретилось в дальнейшем при исследовании необходимых условий минимума сопротивления. [c.46]

    Теорема 1. Всякое осесимметричное безвихревое течение с переменной энтропией есть поступательное движение в направлении оси симметрии. Не постоянное ьюскопараллельное безвихревое течение с переменной энтропией описывается формулами [c.223]



Тепло- и массообмен Теплотехнический эксперимент (1982) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Безвихревое течение



© 2025 chem21.info Реклама на сайте