Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Латеральное коленчатое тело

Рис. 26.15. Нервные структуры и процессы, которые, как полагают, ответственны за БД Г-сон у кошки. Главным элементом служат гигантские ретикулярные нейроны гигантоклеточного ядра моста (ГКЯ). Цифрами в кружках отмечены структуры, находящиеся под влиянием ГКЯ и обусловливающие различные проявления БДГ-сиа. 1—мотонейроны глазодвигательных мышц, фазическое возбуждение которых приводит к быстрым движениям глаз (БДГ). 2 — передний мозг под влиянием ретикулярной формации происходит его генерализоваииое возбуждение и в его нейронах возникают вспышки импульсов (см. записи А). Возможно, с активностью этих нейронов связаны сновидения. 3 — зрительные пути. Можно предполагать, что в возникновении зрительных образов прн сновидениях участвует возбуждение зрительных путей под действием импульсации от системы МКЗ (мост — латеральное коленчатое тело — зрительная кора). 4 — сенсорные пути нх торможение приводит к повышению порога пробуждения. 5 — мотонейроны. Торможение мотонейронов сопровождается повышением порога рефлексов и угнетением движений, запускаемых внутреинимн возбуждающими импульсами двигательных центров ствола и коры головного мозга (см. В). 6 — нейроны ствола мозга. Возбуждение или торможение различных стволовых нейронов сопровождается, во-первых, тонкими фазическимн движениями лицевой мускулатуры (возможно, отражающими эмоциональное содержание сновидений) во-вторых, тоническим сокращением сфинктеров мочевого пузыря и прямой кишки под действием вегетативных нервов в-третьих, периодическими вспышками активности в сердечно-сосудистых, дыхательных и других отделах вегетативной нервной системы. Рис. 26.15. <a href="/info/1358095">Нервные структуры</a> и процессы, которые, как полагают, ответственны за БД Г-сон у кошки. <a href="/info/27343">Главным элементом</a> служат гигантские ретикулярные нейроны гигантоклеточного ядра моста (ГКЯ). Цифрами в кружках отмечены структуры, находящиеся под влиянием ГКЯ и обусловливающие <a href="/info/1355462">различные проявления</a> БДГ-сиа. 1—мотонейроны глазодвигательных мышц, фазическое возбуждение которых приводит к <a href="/info/1357840">быстрым движениям глаз</a> (БДГ). 2 — <a href="/info/1280101">передний мозг</a> под влиянием <a href="/info/1358107">ретикулярной формации</a> происходит его генерализоваииое возбуждение и в его нейронах возникают вспышки импульсов (см. записи А). Возможно, с <a href="/info/640241">активностью этих</a> нейронов связаны сновидения. 3 — <a href="/info/1357893">зрительные пути</a>. Можно предполагать, что в возникновении зрительных образов прн сновидениях участвует возбуждение <a href="/info/1357893">зрительных путей</a> под действием импульсации от системы МКЗ (мост — латеральное коленчатое тело — <a href="/info/99615">зрительная кора</a>). 4 — <a href="/info/1358133">сенсорные пути</a> нх торможение приводит к повышению порога пробуждения. 5 — мотонейроны. Торможение мотонейронов сопровождается повышением порога рефлексов и угнетением движений, запускаемых внутреинимн возбуждающими импульсами двигательных центров ствола и <a href="/info/100588">коры головного мозга</a> (см. В). 6 — нейроны <a href="/info/103824">ствола мозга</a>. Возбуждение или торможение различных стволовых нейронов сопровождается, во-первых, тонкими фазическимн движениями <a href="/info/1910963">лицевой мускулатуры</a> (возможно, отражающими эмоциональное содержание сновидений) во-вторых, тоническим сокращением сфинктеров <a href="/info/515933">мочевого пузыря</a> и <a href="/info/1280617">прямой кишки</a> под действием вегетативных нервов в-третьих, периодическими вспышками активности в <a href="/info/69782">сердечно-сосудистых</a>, дыхательных и других отделах <a href="/info/976913">вегетативной нервной</a> системы.

Рис. 17.15. Схема центральных зрительных путей человека. Обратите внимание на особенности проецирования полей зрения на сетчатку, частичный Берекрест зрительных нервов и упорядоченную проекцию латерального коленчатого тела (ЛКТ) таламуса на первичную зрительную кору в затылочной доле. (Popper, E les, 1977.) Рис. 17.15. Схема <a href="/info/1357893">центральных зрительных путей</a> человека. Обратите внимание на особенности проецирования <a href="/info/776457">полей зрения</a> на сетчатку, частичный Берекрест <a href="/info/278653">зрительных нервов</a> и упорядоченную проекцию латерального коленчатого тела (ЛКТ) таламуса на первичную <a href="/info/99615">зрительную кору</a> в <a href="/info/278649">затылочной доле</a>. (Popper, E les, 1977.)
    Обсуждая влияние прошлого опыта на зрительную систему, мы сосредоточим свое внимание на развитии синаптических связей, благодаря которым информация, приходящая от двух глаз, объединяется, обеспечивая бинокулярное зрение. Для того чтобы объяснить образование таких связей, нужно сначала описать анатомию зрительной системы взрослого индивидуума. У такого млекопитающего, как обезьяна или кошка, оба глаза воспринимают почти одно и то же внешнее поле и посылают по зрительным путям сигналы в мозг таким образом, что два канала информации, относящейся к одному н тому же участку видимого мира, поступают в один и тот же участок мозга (рис. 18-77). Поэтому в левой зрительной коре имеются две упорядоченные проекции правой половины зрительного поля-одна от левого глаза, другая от правого. В мозгу эти две проекции накладываются друг на друга, хотя и не совсем точно. Входы от двух глаз несколько разделены в пространстве-они представлены узкими (0,4 мм) чередующимися полосками, так называемыми колонками глазодоминантности. Это можно показать путем введения в один глаз радиоактивных аминокислот. Меченые молекулы поглощаются нейронами сетчатки и транспортируются по аксонам нервньй клеток в кору головного мозга, каким-то образом проходя через синапсы в передаточных станциях -латеральных коленчатых телах. На радиоавтографах срезов коры ясно видно, что меченые полосы, получающие информацию от меченого глаза, перемежаются немечеными полосами, получающими входные данные 9т немеченого глаза (рис. 18-78). [c.150]

    От ганглионарных клеток нервные волокна передают импульс через передаточную станцию в таламусе, называемую латеральным коленчатым телом, в зрительный центр коры головного мозга (рис. 1.10). Нервные волокна от правой половины зрительного поля обоих глаз идут в левое полущарие головного мозга, а нервные волокна от левой половины — в правое полушарие. Заметьте, что это не нервные волокна левого или правого глаза, по левого и правого секторов каждого глаза, [c.22]


    У таких млекопитающих, как человек или кошка, поля зрения двух глаз почти совпадают, и зрительные сигналы от них комбинируются в мозгу, что обеспечивает бинокулярное стереоскопическое зрение. Это возможно благодаря тому, что аксоны, передающие сигналы от эквивалентных областей двух сетчаток, образуют синапсы в одних и тех же участках мозга (рис. 19-83). В первичной зрительной зоне коры каждого из полушарий головного мозга имеются две упорядоченные карты (проекции) противоположной половины зрительного поля - одна от левого глаза, а другая от правого. Однако эти две проекции накладываются не совсем точно входы от двух глаз разделены - они представлены узкими чередующимися полосками, так называемыми колонками глазодоминантности Эта картина схематично представлена на рис. 19-83 и может быть продемонстрирована путем введения в один глаз радиоактивных аминокислот. Меченые молекулы поглощаются нейронами сетчатки и транспортируются по аксонам нервных клеток в кор> мозга, каким-то образом проходя через синапсы в передаточных станциях - латеральных коленчатых телах. Например, на радиоавтографах срезов зрительной коры взрослой обезьяны ясно видно, что меченые полоски шириной около 0,5 мм, получающие информацию от меченого глаза, перемежаются немечеными полосками такой же ширины, получающими входные сигналы от немеченого глаза (рис. 19-84). [c.371]

    Во МНОГИХ работах были получены данные в пользу того, что это ядро имеет отношение к циркадианным ритмам. Так, например, двустороннее разрушение его приводит к рассогласованию суточной периодичности многих функций нервной системы и организма в целом. Некоторые из этих функций перечислены в табл. 26.2. В данном случае речь идет именно о рассогласовании , так как свободнотекушие ритмы не подавляются полностью и влияние на них со стороны зрительной системы может в какой-то степени сохраняться. Это позволяет предполагать, что в поддержании циркадианных ритмов и подгонке их к суточным изменениям окружающей среды некоторую роль играют и другие важнейшие подкорковые структуры зрительной системы — латеральные коленчатые тела и верхние бугры четверохолмия. [c.199]

Рис. 4.13. Внутриклеточный транспорт меченых компонентов, по данным радиоавтографии. А. Перенос Н-пролина в зрительную кору обезьяны. Инъекция произведена в один глаз Н-пролин включился в белок ганлиозных клеток сетчатки, перешел в их окончания в латеральном коленчатом теле и затем в те его клетки, которые проецируются на кору. Прерывистые полосы— колонки глазодоминантности (см. гл. 17). (Wield et al., 1974) Б. Транспорт Н-фукозы в дендриты мотонейрона после внутриклеточного введения тело клетки, где сахар включается в гликопротеин (foeuzberg et al., 1975). Рис. 4.13. <a href="/info/1277603">Внутриклеточный транспорт</a> меченых компонентов, по данным радиоавтографии. А. Перенос Н-пролина в <a href="/info/99615">зрительную кору</a> обезьяны. Инъекция произведена в один глаз Н-пролин включился в белок ганлиозных клеток сетчатки, перешел в их окончания в латеральном коленчатом теле и затем в те его клетки, которые проецируются на кору. Прерывистые полосы— <a href="/info/1339333">колонки глазодоминантности</a> (см. гл. 17). (Wield et al., 1974) Б. Транспорт Н-фукозы в дендриты мотонейрона после внутриклеточного <a href="/info/359672">введения тело</a> клетки, где сахар включается в гликопротеин (foeuzberg et al., 1975).
    Гипоталамус, нейроны супраоптиче-ского Ядра Мозжечок, клетки Пуркинье Латеральное коленчатое тело [c.40]


Смотреть страницы где упоминается термин Латеральное коленчатое тело: [c.389]    [c.414]    [c.184]    [c.32]    [c.44]    [c.44]   
Биология Том3 Изд3 (2004) -- [ c.329 ]




ПОИСК







© 2025 chem21.info Реклама на сайте