Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Развитие нервных структур

    Соотношение между биофизикой сложных систем и другими разделами биофизики, охарактеризованными выше, подобно соотношению между феноменологической термодинамикой и молекулярной физикой. В основе поведения сложной биологической системы лежат свойства биологических молекул и образуемых ими структур. Дальнейшее развитие биофизики должно привести к ее интеграции — к общему молекулярному истолкованию свойств таких систем. Уже сегодня мы говорим о молекулярных основах эволюции [13, 49]. Однако ряд биологических явлений возникает только на уровне сложной системы. Так, высшая нервная деятельность, в основе которой лежат молекулярные процессы, реализуется лишь в сложной системе. [c.51]


    ФОСФАТИДЫ (фосфолипиды) — сложные эфиры фосфорной кислоты и глицерина или сфингозина, которые связаны эфирной или амидной связью с одним или несколькими остатками высших жирных кислот. В зависимости от природы спирта, лежащего в основе химической структуры Ф., различают глицерофос-фатиды и сфингофосфатиды. Ф. входят в состав клеток и тканей всех живых организмов. Особенно велико их содержанне в нервной ткани, они есть в мозге, печени, мускулах, принимают участие в окислительных процессах живых организмов. Ф. вместе с холестерином и белками, участвуют в построении мембран клеток, обусловливают избирате,аьную проницаемость для различных соединений, активно переносят вещества через мембраны, играют важную роль в транспортировке жиров, жирных кислот и холестерина. Нарушение синтеза Ф. в организме ведет к развитию жирового перерождения печени. [c.264]

    И все-таки, несмотря на кое-какие физиологические и биохимические данные, огромную массу психологических наблюдений и понимание некоторых общих принципов, мы почти ничего не знаем о клеточной основе памяти у позвоночных-ни о деталях строения соответствующих нервных сетей, ни о молекулярных изменениях, происходящих под влиянием индивидуального опыта. Однако при рассмотрении развития нервных структур мы представим ряд добавочных фактов, имеющих отношение к этой проблеме. [c.118]

    Этот раздел посвящен нервно-мышечной системе позвоночных, главным образом мотонейронам, иннервирующим мышцы конечностей, а в последнем разделе главы будет рассмотрена зрительная система позвоночных. На примере этих двух систем мы проиллюстрируем главные принципы развития нервных структур. Основные принципы поведения нервных клеток, насколько они сейчас известны, видимо, во многом одинаковы у беспозвоночных и позвоночных. [c.139]

    Фактор как долго может определяться са.мопроизвольно с помощью молекулярного механизма транскрипции и трансляции ДНК для нас же особый интерес представляют факторы сколько и где . Если сайт (т. е. клеточное окружение развивающейся козетки на пути от нервной пластинки к специализированному органу-мишени) влияет на экспрессию гена, то это предполагает ограничение генетической детерминированности организма. В самом деле, имеются доказательства того, что клетки влияют друг на друга в период развития. Это происходит либо при прямом контакте, молекулярный механизм которого не вполне ясен, либо при выделении химических сигналов, называемых факторами роста нервов. Последние мы будем обсуждать в связи с термином трофизм, а механизм прямого контакта будет показан на примере образования и стабилизации синапсов. Следует отметить, что не только генетическая программа определяет окончательную структуру нейрональной сети, существенно также положение отдельной клетки в пространстве и времени. Именно последнее и помогло сделать следующий вывод геном человека содержит >10 генов, а число синапсов >10 (10 ° нейронов, каждый из которых имеет 10 синапсов, см. выше), так что маловероятно (хотя и нельзя считать совсем невозможным вследствие огромного разнообразия антител, продуцируемых ограниченным числом генов), чтобы специфичность каждого отдельного синапса программировалась определенным участком гена. Мы еще вернемся к этому важному вопросу при рассмотрении синаптогенеза, т. е. процесса образования и стабилизации специфических синапсов. Представляется вполне допустимым, что развитие нервной системы контролируется несколькими факторами генетическим, трофи- [c.319]


    Белок S-100 специфичен для нервной системы [10]. Он широко представлен как в нейронах, так и в глиальных клетках и охарактеризован как цитоплазматический и мембранно-связанный белок М 20 ООО он состоит из двух Са2+-связывающих полипептидных цепей. Видимо, S-100 принадлежит к группе сходных белков, для одного из которых, РАР 1Ь-белок (сокращение для кислого белка богатого фенилаланином), недавно была определена первичная структура [11]. S-100 имеет значительную структурную гомологию с Са +-связывающим мышечным белком тропонином С. Функция S-100 не выяснена в гл. 11 мы вернемся к его возможному участию в развитии нервной системы и пластичности. [c.315]

    Подобно многим биологическим исследованиям, такого рода исследования зависят в значительной мере от наличия подходящего экспериментального материала. Эмбриология в целом страдает в настоящее время от того, что она имеет дело главным образом со сложными единицами. Вместо того чтобы изучать развитие какой-либо однородной структуры, нам приходится рассматривать развитие нервной ткани или ткани печени, в которых содержится много разных веществ. Нам следовало бы экспериментировать с отдельными компонентами клетки, а мы изучаем пересадку кусочков ткани из одной области эмбриона в другую. У нас еще нет хорошего объекта, на котором мы могли бы изучать количественно образование некоторых специфических белков и влияние различных условий на этот процесс. [c.222]

    Размножение — процесс очень важный для вида, поэтому спаривание не может быть полностью предоставлено воле случая. При обсуждении рис. 28.1 мы уже отмечали, что для спаривания необходимо очень точное соответствие в уровне развития обоих половых партнеров. В период развития и созревания животное, разумеется, затрачивает много усилий на то, чтобы находить пищу и чтобы его самого не съели. Как правило, спаривание не относится к таким повседневным заботам, необходимым для выживания оно должно происходить лишь в определенное время. Это время зависит от функции генераторов биоритмов, от созревания гонад и других органов половой системы и от дифференцировки нервных структур, ответственных за половое поведение. Эти общие закономерности в большей или меньшей степени справедливы для всех животных — будь то беспозвоночные или позвоночные. [c.247]

    Радиальные глиальные клетки сохраняются в течение многих дней (у некоторых видов до нескольких месяцев) как популяция неделящихся клеток, ясно отличающихся от нейронов и их предшественников. Только к концу периода развития они в большинстве областей головного и спинного мозга исчезают, высказано предположение, что многие из них превращаются в астроциты, но это еще требует прямых доказательств. Таким образом, радиальные глиальные клетки можно рассматривать как вспомогательный аппарат развития - они необходимы в качестве лесов при построении сложных нервных структур, но в зрелой нервной системе почти нигде не сохраняются. [c.349]

    Берестовский с соавт. [121, 232] провел сравнение оптических свойств мембран нервных клеток и модифицированных черных пленок. При развитии потенциала действия в возбудимой биологической мембране наблюдаются изменения двулучепреломления, которые авторы работ [121, 232] связывают с изменением структуры мембраны. Такие же изменения двулучепреломления наблюдались у модифицированных пленок, имеющих М-образную вольтампер-ную характеристику на участке отрицательного сопротивления. Молекулярный механизм этих явлений не ясен. [c.169]

    Животное с развитым обонятельным аппаратом, есть способное к более разностороннему сбору информации, в принципе имеет, вероятно, такое же устройство для восприятия запаха, но усложненное за счет присутствия нескольких видов обонятельных клеток, каждая из которых чувствительна к определенной частоте. Это возможно в том случае, если структура молекул обонятельного пигмента, а следовательно, и воспринимаемые ими колебательные частоты хотя бы незначительно различаются для клеток разных типов. У животного с двадцатью пятью типами нервных окончаний, чувствительного к двадцати пяти первичным запахам, должно было бы существовать двадцать пять вариантов основной структуры молекулы обонятельного пигмента. Хоть это и невероятно, но наблюдаемый в действительности коричневый цвет обонятельных тканей согласуется скорее с наличием множества разных веществ, поглощающих свет, чем с каким-то единственным типом, который дал бы, вероятно, красный, желтый, зеленый или синий цвет, а не коричневый. [c.206]

    Последнее десятилетие ознаменовалось развитием и становлением нового научного направления биологии нервной ткани — нейрохимии. А сегодня мы вполне обоснованно можем говорить уже о бурном и стремительном развитии этой науки, причем, пожалуй, именно достижения в нейрохимии могут служить тем своеобразным индикатором, который поможет оценить уровень наших знаний о мозге, его структуре и функции его компонентов. [c.5]

    ГОДЫ быстрое развитие иммунологии, клеточной биологии и нейробиологии стало возможным именно потому, что клеточные мембраны рассматривались не только как интересные структурные образования, но и как высокоактивные кооперативные системы. Будучи извлеченной из мембраны, отдельная молекула по определению теряет важную часть своих функций, и даже ее структура сохраняется только при ограниченных условиях. Биохимик, который выделяет ионный канал или пору нервной мембраны, похож на гурмана, пытающегося добыть дырку от бублика. [c.36]


    Быстрое развитие биоорганической химии мембран и, прежде всего, широкое исследование структуры мембранных белков и липидов во многом обусловили прогресс в познании важнейших функций биомембран, таких, как транспорт различных метаболитов, генерация энергии, взаимодействие клеток и их деление, передача нервного возбуждения, рецепция сигналов внешней среды и т. п. [c.549]

    Ткани высокоорганизованных животных организмов подразделяют на 4 группы эпителиальные (ведущая роль их — отграничивающая), ткани внутренней среды с сильно развитым межклеточным веществом в виде волокнистых структур и аморфной субстанцией (кровь, рыхлая и плотная соединительная ткань, хрящевая и костная ткани, репродуктивная ткань), мышечные ткани и нервная ткань Органы животных и человека могут состоять из разных тканей (аорта, органы пищеварительного тракта) или почти целиком из одной ткани (кость, печень, сухожилия и др ) Целостный организм — как система высшего порядка "диктует" запросы органам, структурными компонентами которой они являются [c.119]

    Все эти клетки живут чрезвычайно долго и, естественно, находятся в таких местах, где они в норме защищены от повреждающих воздействий однако в остальном они очень сильно различаются между собой. Нелегко найти какую-либо единую причину того, что эти клетки должны быть перманентными, тогда как множество других клеточных популяций подлежит обновлению. В случае сердечной мышцы вообще трудно представить себе смысл перманентности клеток. Что касается нейронов (которые будут подробно обсуждаться в гл. 18), то кажется понятным, почему интенсивное обновление этих клеток во взрослом организме нецелесообразно было бы очень трудно в точности восстанавливать сложную систему нервных связей, созданную в период развития при совершенно иных условиях. Кроме того, следы памяти, записанные в виде небольших изменений структуры или связей определенных нейронов, вероятно, стиралась бы при замене прежних клеток новыми. С другой стороны, в хрусталике глаза перманентность клеток-это, по-видимому, простое и неизбежное следствие характера роста этой ткани. [c.137]

    Образование или разрушение синапса-это событие, последствия которого могут сказываться в течение всей жнзни. На примере нервно-мышечного соедннення видно, что образование синапсов может регулироваться электрической активностью. Хотя изучение центральной нервной системы связано с гораздо большими трудностями, есть основания думать, что здесь действуют те же самые принципы (некоторые данные в пользу этого будут рассмотрены в конце главы в связи с проблемой развития нервных структур). По-вндимому, синаптическим связям как центральной, так и периферической нервной системы свойственна пластичность индивидуальный опыт может влиять на синапсы путем стимуляции или подавления электрической активности и тем самым вызывать стойкие изменения в поведении особн. Благодаря этому нервная система приобретает долговременную па.мять. Хотя и общепризнано. [c.115]

    Значительная часть информации об общей структуре биомембран, которой мы сейчас располагаем, получена в ходе нзуче-пня специализированной мембраны нервной системы—миели-па. Благодаря своей относительно простой структуре миелин 1спользовался для разработки экспериментальных методов исследования мембран и построения их теоретических моделей. Миелин представляет собой многослойную систему, которая служит своеобразной изоляцией центральных и периферических нервных волокон. Белое вещество мозга у высших организмов более чем на 50% состоит из миелина, поэтому нарушения в образовании миелина при онтогенезе или изменения в структуре миелина в развитой нервной системе приводят к тяжелой невропатии. Следовательно, исследование структуры, функции и образования миелина представляется весьма важным для мембранологии и неврологии. [c.91]

    Доказано, что генетический контроль за развитием нервной системы ограничен. Например, Левинталь показал, что у генетически идентичных дафний с одинаково развитой нервной системой число синаптических контактов, локализация участков этих контактов и тонкая структура дендритов различаются. У экспериментальных животных при выработке навыков поведения число и размер дендритных отростков может варьировать. Толщина коры головного мозга крысы зависит от количества сигналов, полученных из среды, окружающей животное (мы еще вернемся к этому). Но решающим доказательством гибкости генетической программы является наша способность обучаться, наша способность хранить в центральной нервной системе информацию, которая не могла быть заложена в хромосому, так как она не предполагалась в ходе эволюции. [c.333]

    Вследствие однонаправленного способа локомоции у этих животных обособилась голова. Эта структура помогает находить и заглатывать пищу и, поскольку она первой сталкивается с новыми элементами окружающей среды, именно в ней сосредоточены главные сенсорные органы, воспринимающие информацию извне. Повышенный поток информации от этих органов в нервную систему привел к утолщению передних нервных узлов, т. е. образованию своего рода примитивного головного мозга . Такое сосредоточение кормодобывающих, сенсорных и нервных структур в головном отделе называют цефализацией, т. е. попросту развитием головы. Следует отметить, что этот термин относится к развитию всех особенностей, отличающих голову от остального тела, а не только к развитию головного мозга. В последнем случае говорят об энцефализации. [c.315]

    Вопрос о взаимоотношении НА и А может иметь и несколько иные аспекты, а именно возможные функциональные взаимоотношения между уровнем медиатора (НА) в нервных структурах и биосинтезом гормона (А) в эндокринном органе. Снижение уровня НА в гипоталамусе животных (крыс), вызванное инъекцией резерпина, сопровождается усиленным адреналиногенезом в надпочечниках, повышенной секрецией гормона и выраженной гиперадреналинурией. Реституция НА в центральных, нервных структурах (гипоталамусе) приводит через некоторое время к обратному развитию и нормализации биосинтеза и секреции гормона. Закономерности эти установил Бару (1969) и назвал их реципрокными взаимоотношениями. [c.171]

    Некая новая функция также может быть развита на основе предшествующих белков в совершенно новом функциональном направлении [7541. Как видно из табл. 9.4, сериновая протеаза является прототипом функциональной единицы, которая неоднократно использовалась при развитии сложных физиологических систем. Другой распространенный пример —белки актин и миозин, которые широко распространены в подвижных клетках и их содержимом [755, 756]. У более высокоразвитых организмов актин-миозиновыми системами осуществляются такие различные функции, как сокращение мышц, освобождение соединений-переносчиков в нервной системе, амебовидное движение белых кровяных телец и закупорка поврежденных кровяных сосудов путем создания сгустка. Кроме того, в некоторых биологических процессах, когда должна стабилизироваться или изменяться фэрма клеток, используется свойство актина образовывать самые разнообразные структуры за счет обратимой полимеризации [757]. [c.283]

    Общий принцип развития нервной системы сводится к тому, что во зникшие нейроны не остаются на месте появления, а мигрируют на свои окончательные позиции. Миграция — необходимое следствие того факта, что нервная система возникает в виде тонкой эктодермальной трубки (нервная трубка), а в конечном счете становится гораздо более крупной структурой (нервной системой). Кроме того, как уже отмечалось в связи с рисунком Кахала (рис. 10.1), исходное пространственное соотношение между нейронами может сильно отличаться от их окончательного соотношения. [c.238]

    Изучение физико-химических свойств, локализации в отделах мозга, клетках и субклеточных структурах нервной ткани, особенностей метаболизма нейроспецифических белков или сроков появления их в процессе онтогенеза позволяет приблизиться к пониманию фундаментальных механизмов функционирования мозга. Установлена связь нейроспецифических белков с некоторыми патологическими состояниями организма, главным образом с развитием нервно-психических заболеваний. Обнаружение некоторых нейроспецифических белков в спинномозговой жидкости или сыворотке крови может рассматриваться в качестве индикатора повреждения нервной ткани. [c.69]

    Лобко П.И., Скородуля H.H., Стожарова Т.Д. Взаимоотношения между соединительнотканными и нервными структурами по протяжению некоторых вегетативных нервов // Закономерности развития мезенхимных производных периферических нервов человека Сборник научных трудов / Смоленский медицинский институт. - Смоленск, 1973. - Т.39. - С.73-78. [c.34]

    Известный исследователь Куо пытался приложить концепцию Холта к развитию нервной системы птиц. Он отрицал наличие врожденных компонентов поведения и спонтанной активности как таковой. Однако взгляды Куо не выдержали экспериментальной проверки. В частности, в опытах Виктора Гамбургера (Hamburger) было установлено, что уже на ранних стадиях эмбриогенеза движения зародыша имеют нейрогенное происхождение. Электрофизиологические исследования показали, что первые движения обусловливаются спонтанными эндогенными процессами в нервных структурах куриного эмбриона. Спустя 3,5-4 дня после появления первых его движений наблюдались первые эксцероцептивные рефлексы. Многие авторы показали также, что тактильная стимуляция не оказьшает существенного влияния на частоту и периодичность движений, производимых куриным эмбрионом на протяжении первых 2—2,5 недель инкубации. Согласно Гамбургеру, двигательная активность зародыша на начальных этапах эмбриогенеза самогенерируется в центральной нервной системе. Гамбургер поставил следующий эксперимент перерезав зачаток спинного мозга в первый же день развития куриного эмбриона, он регистрировал впоследствии (на 7-й день эмбриогенеза) ритмичные движения зачатков передних и задних конечностей. Нормально эти движения протекают синхронно. У оперированных же эмбрионов эта согласованность нарушилась, но сохранилась самостоятельная ритмичность движений. Эти результаты указывают на независимое эндогенное происхождение этих движений, а тем самым и соответствующих нервных импульсов, на автономную активность процессов в отдельных участках спинного мозга. С развитием головного мозга он начинает контролировать эти ритмы. Эти данные свидетельствуют и о том, что двигательная активность не обусловливается исключительно обменом веществ, например, такими факторами, как уровни накопления продуктов обмена веществ или снабжения тканей кислородом, как предполагали некоторые ученые. [c.53]

    Учитывая результаты экспериментов такого рода Б. Хантер (W. Hunter) в 40-е годы пришел к заключению, что формирование синаптических связей во всей нервной системе позвоночных животных организуется внутренними силами развития без помощи обучения. Иными словами, существует так называемый дофункциоиальный период развития нервной ткани, т.е. нейронные системы дифференцируются до того, как они начали функционировать и независимо от функций, так что в определенный период развития организма формирование структуры предшествует функции. Более того, имеется множество данных о том, что на ранних стадиях формирования мозга образуется огромный избыток синаптических связей, который затем постепенно уменьшается излишние или вообще ненужные синапсы исчезают, а остальные тем или иным способом стабилизируются. Процесс отмирания и стабилизации синапсов, видимо, служит одним из основных механизмов, с помощью которых опыт изменяет структуру мозга в ходе его формирования. [c.54]

    В целом было показано, что способности к элементарной рассудочной деятельности относительно слабо развиты у голубей и кур и достигают у вороновых более высокой степени развития. Морфофизиологической основой этих различий являются особенности строения Wulst у птиц. Корковые структуры птиц едва ли задействованы в это.м процессе, поскольку у этих животных они значительно редуцированы даже по сравнению с корой рептилий. Напротив, у млекопитающих степень развитости корковых структур имеет существенное значение для успешного осуществления рассудочной деятельности, так же как и относительный размер мозга, количество и многообразие межнейронных контактов чем больше количество нервных клеток и чем сложнее система межнейронных контактов, тем выше уровень рассудочной деятельности. [c.211]

    Всем Ф. присущи антигенные, иммуногенные и аллергенные свойства. Пороги аллергенного и токсического действия в хронических опытах для большинства Ф. практически совпадают. Ферментные препараты способны вызвать сенсибилизацию организма, приводящую к развитию аллергических заболеваний. Имеются указания на аллергические поражения кожных покровов при пользовании синтетическими моющими средствами, содержащими Ф. мезентерии, протомезентерин, протосубтилин. Уменьшение содержания энзимов в детергентах снижает заболеваемость дерматитами. Случаи дерматита и экзем описаны у рабочих мясокомбинатов, имеющих контакт с соками и промывными жидкостями ЖКТ, особенно при разделке и обработке поджелудочной железы. Дерматиты у этих лиц сопровождаются изъязвлениями ладоней и ногтевых фаланг, имеют тенденцию к рецидивам и переходу в экзему. Роль Ф. подтверждена резко положительными кожными тестами с 1% раствором пищеварительных энзимов. Специфическим фактором вредности в производстве Ф. помимо мелкодисперсной пыли готового продукта являются также микроорганизмы — продуценты энзимов, которые сами по себе и особенно в комбинации с Ф. обладают сильными аллергенными свойствами. У рабочих предприятий микробиологической промышленности, производящих Ф., во многих случаях встречаются аллергические риниты, дерматиты, астматические бронхиты. Изучение состояния здоровья рабочих основных профессий крупнотоннажного ферментного производства обнаружило у 70 % заболевания кожи, у 64,4 % — ЛОР-органов, у 59,4 % — нервной системы, у 50,5 % — внутренних органов, у 34,6 % — женских половых органов. Рентгенологические изменения легких выявлены у 63,5 % рабочих, нарушение функции внешнего дыхания с преимущественной обструкцией бронхов мелкого калибра — у 35 %. Среди патологии кожи наиболее часто наблюдались микозы (27,4 %), гнойничковые заболевания (14,3 %), аллергический дерматит (12 %) в структуре заболеваний ЛОР-органов — хронический субатрофический ринит (46,7 %), фарингит (41,3 %) и ларингит (26,2 %) хронический гастродуоденит отмечен у 35,4 %. Число хронических воспалительных заболеваний верхних дыхательных путей нарастало с увеличением стажа работы. Хронический бронхит при стаже работы до 1 г. выявлен у 4,8 % рабочих, при стаже до 5 лет — у 15,8 %, до 10 лет — у 18 %. [c.762]

    На основе классич. Б. в этот период возникли самостоят. науки-молекулярная биология и бноорганическая хи.чия. Научное направление, объединяющее эти науки с биофизикой, получило название физ.-хим. биологии. Совр. период в развитии Б. характеризуется новыми достижениями в изучении живой материи. В области энзимологии исследованы сотни ферментных систем, во мн. случаях установлен механизм их каталитич. действия. Новые концепции возникли в области Б, гормонов, в частности в связи с ролью аденилатциклазной системы в области биоэнергетики, где было открыто участие в генерации энергии клеточных мембран, а познании механизмов передачи нервного возбуждения и биохим. основ высшей нервной деятельности и др. В настоящее время установлен в общих чертах механизм передачи генетич. информации, реализующийся при репликации, транскрипции и трансляции, разработаны методы получения и определения структуры отдельных генов, по существу завершено составление метаболич. карты , т.е. путей превращения в-в в клетке, свидетельствующей о биохим. общности живых организмов и непрерывности обмена в-в в биосфере. [c.292]

    За последние годы число пептидов, найденных в живых системах, сильно возросло. В период 1944—1954 гг. были разработаны основные аналитические методы выделения, очистки и установления структуры пептидов. Однако исследования некоторых пептидов, особенно пептидов головного мозга, совершенно не развивались, так как были неизвестны соответствующие аналитические методы определения нанограммовых (10" г) или меньших количеств вещества. Лишь с развитием радиоиммунного анализа (RIA) (Р. С. Ялоу, лауреат Нобелевской премии 1977 г. по физиологии и медицине, и С. Берсон) стали возможны определения исключительно малых концентраций пептидов в соответствующих препаратах. Например, некоторые гормоны можно обнаружить при содержании 10" г в 1 мл крови. Развитие радиоиммунного метода позволило начать исследование нейрогормонов гипоталамуса. Гийемен и Шалли (получившие вместе с Ялоу Нобеленскую премию по физиологии и медицине) смогли привести экспериментальные доказательства того, что центральная нервная система модулирует активность гипоталамуса путем выделения ничтожных количеств либеринов (факторы высвобождения гормонов, рилизинг-факторы) тем самым контролируется эндокринная регуляция. Оба исследователя (совершенно независимо друг от друга) установили последовательность первых гормонов гипоталамуса и синтезировали их в лаборатории. [c.230]

    Поскольку нейрон способен проводить импульсы (потенциалы действия) и с помощыо синапсов принимать и передавать сигналы, его специфическая роль определяется его связями с другими клетками. Поэтому для того, чтобы понять, как нейрон приобретает определенную функцию, необходимо рассмотреть, как он направляет свои длинные отростки к соответствующим местам назначения и каким образом устанавливает упорядоченные синаптические связи. Особое внимание исследователей привлекают две структуры конус роста, с помощью которого развивающийся отросток нервной клетки (аксон или дендрит) направляется к своей мишени, и синапс, который образуется, когда отросток достигнет цели. Конус роста играет центральную роль в образовании нервных связей. Описание поведения изолированного конуса роста послужит основой для последующего обсуждения развития нейронных систем. [c.133]

    Общая характеристика. Группа А. А. объединяет родственные по химической структуре, близкие по антибактериальному действию, фармакологическим и токсическим свойствам антибиотики природного происхождения (стрептомицин, канамицин, мономицин, гентамицин, тобрамицин, сизомицин) и их полусинтетические производные. Токсическое действие. Характерными свойствами А. А. являются их нефротоксическое и ототоксическое действие, а также способность вызывать блокаду нервно-мышечной проводимости. Все А. А. способны вызывать нарушения слуха и вестибулярные расстройства. За исключением стрептомицина и сизомицина, которые реже вызывают слуховые расстройства, чем вестибулярные нарушения, другие А. А. чаще приводят к расстройствам слуха, чем к поражению вестибулярного аппарата. Частота развития ототоксических явлений находится в прямой зависимости от длительности применения А. А., их суточной [c.755]

    И как ОНН попадают в нужные места Нервная система ставит перед нами еще одну проблему как образуются правильные соединения между нервными иетками В большинстве других областей эмбриологии можно рассматривать клетки как точечные объекты, каждый из которых занимает определенное положение и обладает определенными внутренними свойствами. Но сущ. ность нейрона в том и состоит, что он не является точечным объектом он необычайно вытянут и снабжен длинным аксоном и дендритами, соединяющими его с другими клетками. Фунющя нейронов состоит в регулировании и интеграции различных видов активности организма, и эта функщ1я определяется их соединением. Если соединения ошибочны, работа нервной системы будет нарушена. Мы уже можем объяснить, как образуются нейроны различных типов и как их тела уиадьшаются в регулярную структуру для этого мы привлекаем те же принщшы, которые применимы и к остальным системам тела. Тем не менее упорядоченный рост аксонов и дендритов и образование правильной системы синапсов представляют собой явления иного порядка. Передний конец растущего аксона или дендрита ползет примерно так же, как и мигрирующая клетка его можно назвать мигрирующим органом неподвижной клетки. И движения такого мигрирующего органа регулируются частично теми же факторами, что и движения мигрирующей клетки (контактными воздействиями и др.), но, когда мы рассматриваем его взаимоотношения с телом иетки и с другими нервными волокнами и его способность образовывать синапсы, перед нами встают новые проблемы, требующие нового подхода. Поэтому мы не будем здесь углубляться в вопросы построения нервной системы-высшего продукта индивидуального развития,-мы вернемся к этим вопросам в главе 18. [c.126]

    Хотя ткани организма во многих отношениях сильно различаются между собой, всем им нужны определенные элементарные условия. Превде всего они нуждаются в механической опоре, которую очень часто обеспечивает внеклеточный матрикс. Такого рода соединительнотканная опорная структура имеется, например, в мышцах, железах, костном мозге и под эпителиями, например под эпидермисом кожи (рис. 16-1). Эту структуру создают главным образом фибробласты, находящиеся в матриксе. Кроме того, почти все ткани нуждаются в кровоснабжении, для того чтобы получать питательные вещества и освобождаться от шлаков, поэтому они пронизаны кровеносными сосудами, которые выстланы эндотелиальными клетками. Точно так же большинство тканей иннервировано, т.е. содержит аксоны нервных клеток (нейронов), одетые оболочкой из шванноеских клеток. В тканях часто присутствуют. макрофаги, которые могут быть нужны для ликвидации остатков отмерших клеток и удаления излишнего матрикса, а также лимфоциты и другие лейкоциты, призванные бороться с инфекцией. Иногда в ткани могут находиться меланоциты, обеспечивающие пигментацию. Большая часть этих различных клеток, играющих подсобную роль по отношению к функции данной ткани, образуется вне этой ткани и проникает в нее в процессе ее развития [c.131]

    После того как нейрон мигрировал в надлежащее место, он посылает аксон, который должен найти путь к нужной мищенв. Так обстоит дело и с мото-иейронами, иннервирующими конечности,-как только они заканчивают ми-градюо, у них начинают формироваться конусы роста. Эти последние проходят сквозь базальную мембрану, окружающую нервную трубку, и направляются через соединительную ткань зародыша к местам развития мышц. Конусы роста движутся по строго определенным путям об этом свидетельствует точное подобие расположения нервов на двух сторонах тела (рис. 18-72). Даже чужеродные аксоны, в экспериментальных условиях врастающие в конечность в местах нормальной иннервации, используют почти в точности тот же стандартный набор путей, по которым могут свободно продаигаться конусы роста Очевидно, эти пути определяются внутренней структурой самой конечности, но молекулярная основа такой направляющей системы остается загадкой. Видимо, по таким же предопределенным путям растут аксоны и в центральной нервной системе, где эти пути, вероятно, определяются местными особенностями глиальных клеток эмбриона. [c.141]


Смотреть страницы где упоминается термин Развитие нервных структур : [c.141]    [c.53]    [c.149]    [c.330]    [c.229]    [c.67]    [c.89]    [c.53]    [c.8]    [c.24]    [c.357]    [c.139]   
Нейробиология Т.2 (1987) -- [ c.236 , c.265 ]




ПОИСК







© 2025 chem21.info Реклама на сайте