Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сперматогенез и хромосома

    В настоящее время в университетах США изучается влияние каждой хромосомы и их транслокаций и делеций на развитие видимых летальных мутаций, влияние отдельных локусов на гаметогенез, сперматогенез и мейоз, а также функции У -хромосомы в сперматогенезе [179]. [c.11]

    Биохимические функции. В репродуктивных тканях андрогены отвечают за их дифференцировку и функционирование. Образовавшийся в семенниках тестостерон и его активный метаболит ДГТ проникают в клетки-мишени методом простой или облегченной диффузии и взаимодействуют с одним и тем же белковым рецептором. Образовавшиеся гормон-рецепторные комплексы перемещаются в ядро, связываются с хроматином и стимулируют процессы синтеза белка (гл. И). В репродуктивных органах эти процессы реализуются в половой дифференцировке, основные этапы которой представляют собой хромосомы—гонады—фенотип. Кроме того, андрогены стимулируют сперматогенез, половое созревание и по принципу обратной связи контролируют секрецию гонадотропинов. Помимо влияния на функционирование репродуктивной системы, андрогены участвуют в контроле клеточного метаболизма многих других тканей и органов. Независимо от типа ткани андрогены проявляют анаболические эффекты, связанные со стимуляцией процессов транскрипции и увеличения скорости синтеза белка. Более всего андрогенных клеток-мишеней находится в скелетных мышцах, причем под действием гормонов происходит резкое увеличение мышечных белков и наращивание мышечной массы. Стимуляция белок-синтетических процессов под действием андрогенов отмечена в почках, сердечной мышце, костной ткани. Андрогены образуются не только в семенниках, но и в яичниках. Их роль в организме женщин или самок животных заключается в формировании поведенческих реакций, а также в контроле за синтезом белка в репродуктивных органах. [c.161]


Рис. 17.23. Наследование гена sex-reversed у мышей. А. Профаза мейоза в сперматогенезе у самца мыши генотипа XY sxr. Аномальная У-хромосома имеет последовательности, гибридизующиеся с сателлитной ДНК змей вблизи центромеры и у конца (выделены цветом). Концевое спаривание хроматид X и Y, вероятно, происходит нормально. В данном случае такое спаривание может привести к кроссинговеру, в результате которого терминальные гены, определяющие мужской пол. Рис. 17.23. <a href="/info/1339674">Наследование гена</a> sex-reversed у мышей. А. <a href="/info/510464">Профаза мейоза</a> в сперматогенезе у самца мыши генотипа XY sxr. Аномальная У-хромосома имеет последовательности, гибридизующиеся с сателлитной ДНК змей вблизи центромеры и у конца (выделены цветом). Концевое спаривание хроматид X и Y, вероятно, происходит нормально. В данном случае такое спаривание может привести к кроссинговеру, в результате которого терминальные гены, определяющие мужской пол.
    Половая дифференцировка у дрозофилы зависит непосредственно от хромосомного состава каждой клетки. Как упоминалось в гл. 3, пол определяется отношением количества Х-хромосом к количеству ауто-сом, зиготы ХО дают самцов, являющихся стерильными вследствие отсутствия генов У-хромосомы, необходимых для сперматогенеза. [c.254]

    В настоящее время в -хромосоме выявлена локализация около 20 генов, в том числе генов, детерминирующих развитие семенников, отвечающих за сперматогенез, контролирующих интенсивность роста, определяющих оволосение ушной раковины, средних фаланг кистей, и некоторые другие признаки. Признак, ген которого локализован в У-хромосоме, передается от отца всем мальчикам, и только мальчикам. Патологические мутации, обусловливающие нарушения формирования семенников или сперматогенеза, не наследуются в связи со стерильностью их носителей. Пример родословной с У-сцепленным типом наследования представлен на рис. IX. 16. [c.140]

    Как известно, синтез нуклеиновых кислот, особенно РНК, которая содержится в хромосомах, связан с митозом (Э. Пирс, 1962 Ж- Браше, 1961). Поэтому нарушение указанного синтеза на том или ином уровне сперматогенеза является надежным индикатором повреждения митоза. [c.252]

    В 1959 г. было установлено, что причиной синдрома Клайнфельтера является дополнительная Х-хромосома. Больные имеют 47 хромосом вместо 46 половые хромосомы представлены набором XXY вместо XY. Как и синдром Дауна, это пример трисомии. На рис. 25.29 показано, как в результате нерасхождения в мейозе появляется дополнительная хромосома. Это может происходить при сперматогенезе (образовании спермиев) у отца или при оогенезе (образовании яйцеклеток) у матери. Из рисунка также видно, что в результате нерасхождения половык хромосом у мужчины такое же количество зигот будет иметь только одну Х-хромосому и не иметь Y-хромосомы (обозначается как ХО). Такой генотип является причиной синдрома Тернера, который рассматривается в следующем разделе. В случае нерасхождения у женщины могут также образоваться зиготы XXX и Y0. Между женщинами с трисомией по Х-хромосо-ме и здоровыми женщинами нет заметных физических различий кроме того, что женщины XXX обычно немного выше. Вместе с тем есть данные о том, что у женщин XXX чаще наблюдаются отклонения в поведении и трудности в обучении. Зиготы Y0 не развиваются, поскольку у них полностью отсутствуют многие жизненно важные гены. [c.255]


    У человека наличие Y-хромосомы-необходимое условие принадлежности к мужскому полу организмы, обладающие одной Х-хромосомой в отсутствие Y-хромосомы, характеризуются женским фенотипом, хотя большинство из них стерильны (этот генотип определяет так называемый синдром Тернера см. гл. 21). Вообще, по-видимому, присутствие Y-хромосомы необходимо у животных для возникновения мужских половых признаков (или женских, если гетерогаметным полом являются самки) или, во всяком случае, для плодовитости. У D. melanogaster особи с одной Х-хромосомой в отсутствие Y-хромосомы фенотипически выглядят как самцы, однако они стерильны содержащиеся в Y-хромосоме гены необходимы для сперматогенеза. [c.80]

    Прямое доказательство того, что определяющие пол гены находятся в Y-хромосоме, получено путем изучения наследования доминантного признака sex-reversed (Sxr) у мыщей. Наличие гена Sxr приводит к тому, что зиготы с двумя Х-хромосомами развиваются по мужскому типу с образованием семенников (сперматогенез отсутствует). У таких самцов происходит инактивация одной Х-хромосомы, и они являются мозаиками по генам, сцепленным с полом (рис. 17.22). Сначала предполагалось, что Sxr-аутосомный ген, поскольку он не сцеплен с Х-хромосо-мой, а кариотип самцов Sxr включает две Х-хромосомы и не имеет Y-хромосом. Однако целый ряд открытий, которые оказались возможными благодаря применению новых методов работы с ДНК, показали, что наследование мутации Sxr носит иной характер. [c.278]

    Исследование хромосом в метафазе мейоза при сперматогенезе самцов Sxr показывает, что между аномальной Y-хромосомой и Х-хромосомой иногда происходит нереципрокный кроссинговер, в результате чего возникает аномальная Х-хромосома, присутствующая у самцов XX Sxr (рис. 17.23). Такой способ передачи свидетельствует о том, что опре- [c.279]

    Нормальный сперматогенез требует инактивации одной из Х-хромосом в первичных сперматоцитах, где цитологически эта хромосома обнаруживается в виде инертного тельца Барра. В сперматоцитах особей человека и мыши, имеющих генотип XXY, или у мышей генотипа XX Sxr инактивируется только одна из Х-хромосом, поэтому функционально активная сперма не образуется. Очевидно, Х-хромосома несет один или более генов, экспрессия которых при нормальном сперматогенезе должна отсутствовать. [c.281]

    Происходит ли инактивация Х-хромосомы в сперматогенезе Лифшиц и Линдслей (1972) [420] выдвинули гипотезу, согласно которой X-хромосома инактивируется не только у индивидов, имеющих их несколько, но также и в первичных сперматоцитах во время нормального сперматогенеза. Вполне возможно, что это необходимо для нормального созревания сперматозоидов. Больные мужского пола с синдромом Дауна бесплодны из-за остановки сперматогенеза. При исследовании стадии пахитены в сперматогенезе у больных с синдромом Дауна обнаружено, что дополнительная хромосома 2 конъюгирует с Х- комплексом [399]. Для объяснения некоторых фактов, полученных на мышах, также необходимо допустить, что мейо1Ическая [c.110]

    Существующие тест-системы для выявления мутаций в половых клетках представлены на рис. 5.48. Предположим, что мутация индуцирована в сперматогонии. Если эта мутация является хромосомной, она может быть идентифицирована сразу в процессе митотических делений сперматогониев. В течение первого и второго мейотических делений можно наблюдать влияние мейоза на индуцированные аберрации. Гаплоидная фаза сперматогенеза до сих пор была недоступна для изучения (см., однако, [431, 432]). Последующие митотические деления происходят во время раннего эмбрионального развития особей поколения Fj. На этой стадии эмбриогенеза можно вымывать зиготы из фаллопиевых труб и изучать их хромосомы. [c.230]

    Для изучения индукции доминантных леталей на разных стадиях сперматогенеза у мышей самцов обрабатывают мутагеном и в течение трех последующих дней скрещивают с девственными самками. Самок забивают примерно на 15-й день беременности и производят подсчет мертвых и живых имплантаций. Все мертвые имплантации причисляются к доминантным деталям. Этот эксперимент позволяет проводить тестирование относительной чувствительности к мутагену на разных стадиях развития половых клеток. Потомство самок, скрещивавшихся сразу после воздействия на самцов, получило отцовские хромосомы, обработанные на стадии зрелых сперматозоидов. Потомки от скрещиваний, состоявшихся приблизительно через 50 дней после воздействия мутагеном, произошли в результате оплодотворения сперматозоидами, обработанными на стадии сперматогониев. [c.266]

    Транслокации фрагментов хромосом от одной хромосомы на другую могут происходить на всех стадиях сперматогенеза. Их интенсивно изучали на самцах мышей. По техническим причинам данные для половых клеток самок недостаточны. Разные стадии оогенеза и сперматогенеза значительно различаются по радиочувствительности и зависимости доза-эффект. Например, после облучения сперматогониев рентгеновским излучением частота транслокаций у мышей возрастает с увеличением дозы вплоть до 7 Гр, а затем снижается, несмотря на дальнейшее увеличение дозы. [c.102]

    Сперматогенез, т.е. процесс образования спермы из герминальных стволовых клеток, протекает в семенниках у млекопитающих и у дрозофилы сходным образом. Важным этапом этого процесса является активация транскрипции массы семенник-специфичных генов перед двумя делениями мейоза, механизмы которой остаются непонятными. В ходе наших исследований у дрозофилы был обнаружен район хромосомы, содержащий пять генов, экспрессирующихся только в семенниках. При этом гены, составляющие этот район, оказались неродственными между собой, что является новым типом кластерной организации генов. Предполагается, что в описываемом районе генома находятся функционирующие в генеративной ткани самцов дальнодействующие регуляторы транскрипции - активатор транскрипции (энхансер) и элементы, препятствующие распространению влияния активатора на соседние гены (инсуля-торы). На этой модельной системе мы исследуем механизмы транскрипционной активации семенник-специфичных генов. С этой целью изучаются промоторные области генов, входящих в кластер, дальнодействующие транскрипционные регуляторы (энхансеры и инсуляторы), вероятно, присутствующие в кластере, а также состояние хроматина в кластере. [c.40]


    Как уже упоминалось, пять генов, входящих в кластер, неродственны между собой. Тем не менее они экспрессируются в генеративной ткани самцов дрозофилы на определенной стадии сперматогенеза, что предполагает существование общих для всех генов регуляторных элементов (энхансера и ршсуляторов). Можно думать, что исходно в данном районе существовали один-два гена, промоторы которых активировались семенник-специфичным энхансером, а влияние на эти гены окружающих последовательностей, либо влияние энхансера на соседние гены, ограничивалось расположенными вокруг инсуляторами. В ходе эволюции генома (рис. 15) в результате случайных транспозиций дуплицированных копий клеточных генов в участок хромосомы, в котором находился семенник-специфичный энхансер, новые реплики приобрели способность к экспрессии в семенниках. Возможно, именно так возник описываемый кластер семенник-специфичных генов. [c.45]


Смотреть страницы где упоминается термин Сперматогенез и хромосома: [c.36]    [c.278]    [c.38]    [c.44]    [c.48]    [c.72]    [c.38]   
Современная генетика Т.3 (1988) -- [ c.280 , c.281 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2024 chem21.info Реклама на сайте