Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНК-полимераза синтез митохондриальных ДНК

    В ядре они связываются с ДНК, ингибируют репликацию ДНК, подавляют активность ДНК-зависимой РНК-полимеразы, собственно процесс транскрипции, в митохондриях вызывают повышенную проницаемость мембран, блокируют синтез митохондриальных ДНК и белка, нарушают электронтранспортную систему, вызывая энергетический голод клетки. [c.382]

    За одним исключением, о ферментах или белковых факторах, участвующих в репликации митохондриальных ДНК, ничего не известно. Установлено лишь, что из трех типичных эукариотических ДНК-полимераз в синтезе митохондриальных ДНК участвует у-полимераза. [c.222]


    ДНК-полимераза у, по-видимому, состоит из нескольких идентичных субъединиц с молекулярной массой около 50 кД. Это митохондриальный фермент, который осуществляет синтез ДНК митохондрий. Сходный фермент обнаружен в хлоропластах растений. [c.51]

    Главной репликативной ДНК-полимеразой является полимераза а. Ведущую роль в репликации ядерной ДНК наряду с а-полимеразой выполняет ДНК-полнмераза б предполагается, что 5-полимераза осуществляет непрерывный синтез лидирующей цепи ДНК, а а-полимераза — синтез фрагментов Оказаки запаздывающей цепи. ДНК-полимераза р не участвует в репликации ДНК и является целиком репаративным ферментом, а ДНК-полимераза у реплицирует митохондриальную ДНК. [c.13]

    Митохондрии располагают своим собственным аппаратом для хранения и экспрессии их генетической информации. Эта информация, содержащаяся в митохондриальной ДНК, включает программы для синтеза специальных митохондриальных транспортных и рибосомных РНК. Кроме того, в митохондриальной ДНК запрограммировано несколько полипептидов, участвующих в выполнении основных функций митохондрий. В их числе некоторые из субъединиц цитохром оксидазы и АТФ-синтазы. Однако ббльшая часть белков программируется в ядре и синтезируется в цитоплазме вне митохондрий. Это же полностью относится к белкам, обслуживающим генетический аппарат митохондрий к митохондриальным ДНК- и РНК-полимеразам, к белкам митохондриальных рибосом, которые резко отличаются от цитоплазматических рибосом и по своим основным характеристикам приближаются к рибосомам прокариот, а также к аминоацил—тРНК-синтетазам, катализирующим аминоацилирование митохондриальных тРНК. Следовательно, митохондрии должны располагать механизмом для транспорта в них широкого спектра белков, синтезируемых в цитоплазме. То же в общих чертах можно отнести и к функционированию генетического аппарата хлоропластов. [c.434]

    АТФ — это адениновый нуклеотид, к фосфату которого присоединены еще две фосфатные группы. Его полное имя— аденозинтрифосфат. Забирая энергию у АТФ, фермент отщепляет у него одну фосфатную группу, делая из него АДФ, т. е. аденозиндифосфат. В митохондриях происходит подзарядка — к АДФ вновь присоединяется фосфатная группа. Но к нашему рассказу все это не имеет прямого отношения. Для нас важно другое митохондрии имеют свою собственную ДНК. Более того, митохондрии располагают своей собственной РНК-полимеразой, которая снимает мРНКовую копию с митохондриальной ДНК Но и это не все. В митохондриях есть свои рибосомы, свой собственный аппарат белкового синтеза. Это уже совсем странно — ведь в той же цитоплазме множество нормальных клеточных рибосом. Но на этих рибосомах синтезируется белок только с мРНКовых копий ядерной ДНК. Митохондрии ими пользоваться почему-то не желают. [c.72]


    В эукариотических клетках были обнаружены три вида ДНК-поли-меразной активности. Фермент Pola служит основной полимеразой, вовлеченной в синтез ДНК в репликативной вилке. Фермент Роф, судя по всему, участвует главным образом в репарационных процессах, а Poly-это единственная полимераза, обнаруженная в митохондриях, используемая, вероятно, для репликации митохондриального генома. Для функционирования всех трех видов полимераз требуется наличие З -ОН-затравочного конца. Было показано также участие РНК-затравок в репликации эукариотических ДНК. В то же время были выявлены весьма существенные различия в том, как прокариотические и эукарио- [c.120]

    Хотя у мутантов petite нет митохондриального синтеза белка и поэтому они не образуют митохондрий, способных синтезировать АТР, тем не менее > них есть митохондрии с нормальной наружной мембраной, но с плохо развитыми кристами внутренней мембраны (рис. 7-72). В таких митохондриях имеются практически все митохондриальные белки, кодируемые ядерным геномом и переносимые в органелл> из цитозоля, в том числе ДНК- и РНК-полимеразы, все ферменты цикла лимонной кислоты и большинство белков внутренней мембраны. Это наглядно демонстрирует нреобладаюшую роль ядерного генома в биогенезе митохондрий. Кроме того, ясно, что органеллы, способные делиться надвое, могут неопределенно долго воспроизводиться в цитоплазме нролиферируюших эукариотических клеток даже нри полном отсутствии собственного генома. Многие биологи полагают, что таким же путем обычно воспроизводятся пероксисомы (разд. 8.5.2). [c.496]

    Хотя у мутантов petite нет митохондриального синтеза белков и поэтому нормальных митохондрий не образуется, тем не менее такие мутанты содф-жат промитохондрии, которые в известной мере сходны с обычными митохондриями, имеют нормальную наружную мембрану и внутреннюю мембрану со слабо развитыми кристами (рис. 9-66). В промитохондриях имеются многие ферменты, кодируемые ядерными генами и синтезируемые на рибосомах цитоплазмы, в том числе ДНК- и РНК-полимеразы, все ферменты цикла лимонной кислоты и многие белки, входящие в состав внутренней мембраны. Это наглядно демонстрирует преобладающую роль ядерного генома в биогенезе митохондрий. [c.60]


Смотреть страницы где упоминается термин ДНК-полимераза синтез митохондриальных ДНК: [c.206]    [c.226]    [c.492]    [c.35]    [c.62]    [c.492]   
Гены и геномы Т 2 (1998) -- [ c.222 ]




ПОИСК







© 2025 chem21.info Реклама на сайте