Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппарат для последовательного белкового синтеза

    Расшифровка генетического кода Аппарат для последовательного белкового синтеза [c.59]

    То же свойство — деформация — но уже на более высоком уровне оказалось полезным для генезиса структур, допускающих координированную работу матриц типа РНК и ДНК, и систем ферментов, выполняющих заданные операции в синтезе белков. Движение рибосом во время синтеза свидетельствует о необычайных меха нических возможностях, скрытых в цепях высокомолекулярных соединений. Если мы продолжим анализ роли движений и деформаций на новых уровнях организации, то увидим, с какой последовательностью этот фактор используется природой. Не только мышечные волокна, но и различные механизмы, созданные мозгом изобретателя — ведь это тоже средства управления отношениями организм — среда, но уже построенные не из белков, а совсем из иных материалов. Однако механизмы были созданы человеком, и их следует рассматривать как этап эволюции, причем механизмы появились именно пО тому, что исходной системой была белковая система. В конечном итоге зависимость высших функций организма от состава органов и интенсивности примитивных процессов хотя и существует, но является слабой. Известно, что даже в самом организме можно заменить искусственными аппаратами и такие важные детали, как сердце, почки, легкие, сосуды, кости и т. п., а отношение человека к среде и другим людям опосредствовано множеством механизмов. [c.110]


    Белки фактически являются единственным классом соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Их поведение и исключительная роль в процессах жизнедеятельности определяются особой, только им присущей молекулярной структурной организацией. За единичными исключениями лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и конформационная динамика которых обусловлены аминокислотной последовательностью. Белки несопоставимы по своему функциональному разнообразию с действиями какого-либо другого класса молекул живой и неживой природы. В то же время, при функциональной универсальности природных аминокислотных последовательностей свойства каждого отдельного белка уникальны в отношении физиологической функции, механизма ее реализации, зависимости от внешних условий, природы лиганда и растворителя. Очевидно, поэтому назначение генетического аппарата любого организма сведено к хранению информации только о белках и их синтезе, а биосистемы всех уровней, включая молекулярный, можно считать "произведениями" белков. Последние не только синтезируют почти все соединения живой природы, но и способствуют приданию им пространственной формы, необходимой для протекания процессов жизнедеятельности. [c.108]

    В результате уже к концу 1965 г. бьши получены полные данные о коде белкового синтеза в рибосомальном аппарате клетки (табл. 23). Как видно из таблицы, из 64 триплетов 61 кодирует последовательность вхождения аминокислот в полипептидную цепь в процессе ее биосинтеза в рибосоме. Три триплета (У А, ЖГ и УГА) не участвуют в кодировании. Однако и они играют важную роль в биосинтезе белка. Именно эти триплеты распознаются белковыми факторами терминации в тот момент, когда они окажутся (по мере продвижения мРНК через рибосому) в ее аминоацильном центре. А это, как известно, приводит к завершению синтеза белковой молекулы. [c.297]

    В настоящей главе мы увидим, что некоторые молекулы РНК играют роль промежуточных переносчиков информации в синтезе белка, тогда как другие молекулы РНК являются частью аппарата белкового синтеза. Затем мы рассмотрим синтез РНК, протекающий в соответствии с последовательностью ДНК-матрицы. Это -процесс транскрипции, за которым следует трансляция. Нри трансляции РНК-ма-трицы направляют синтез белков. Более подробно этот вопрос рассматривается в гл. 27. [c.46]


    Матричный механизм биосинтеза белков. Общая схема матричного биосинтеза белковых тел представлена на рис. 93. Она складывается из трех подготовительных процессов—переноса вещества, энергии и информации в рибосому, и главного центрального процесса—сборки полипептидных цепей в рибосоме. Один из элементов указанной схемы (правая верхняя часть рисунка)—транскрипция (переписывание) информации о порядке расположения аминокислотных остатков в молекуле синтезируемого белка—рассмотрен ранее. Известно, что информация об этом закодирована в генетическом аппарате клетки последовательностью дезоксирибонуклеотидных остатков в молекуле ДНК. Будучи преобразована (транскрибирована) в последовательность рибонуклеотидных остатков в информативной части молекулы мРНК, синтезированной на ДНК в качестве матрицы, эта информация о первичной структуре белка поступает в рибосому. Здесь она переводится (транслируется) с полинуклеотидной последовательности в аминокислотную последовательность новообразуемого в рибосомальном аппарате белка. Два других процесса—перенос вещества (18 протеиногенных аминокислот и двух амидов) и. перенос энергии, необходимой для синтеза пептидных связей (левая верхняя часть рисунка), равно как и наиболее сложный процесс—сборка полипептидной цепи в активной, транслирующей рибосоме (центральная часть рисунка), нуждаются в детальной характеристике. Она дана ниже. [c.280]


Смотреть страницы где упоминается термин Аппарат для последовательного белкового синтеза: [c.249]    [c.29]    [c.40]    [c.246]    [c.287]    [c.165]   
Смотреть главы в:

Гены -> Аппарат для последовательного белкового синтеза




ПОИСК







© 2025 chem21.info Реклама на сайте