Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондриальная мембрана транспортные системы

    Метод моделирования и получения искусственных мембран основан на получении и исследовании моно- и бимолекулярных липидных слоев, везикул, липосом и протеолипосом. Сущ ествует два основных типа искусственных мембран классические плоские и сферические мембраны различного размера. Для получения искусственных мембран используют различные фосфатиды, нейтральные глицериды, смеси липидов биологического происхождения, добавляя к ним холестерин, а-токоферол и другие минорные добавки. Потенциальная ценность искусственных мембран для исследований зависит от возможности включения в них природных белков, в особенности тех, которые обладают транспортными свойствами. Липосомы, со-стоящ ие из белков и липидов, стали получать в 60-е гг. термин протеолипосомы был введен В. П. Скулачевым. В настоящее время разработан целый ряд методов приготовления различных типов липосом и протеолипосом, а также их стандартизации по размерам, структуре, гомогенности, стабильности и другим характеристикам. Липосомы используют для доставки в клетку лекарственных и химических соединений, стабилизации ферментов в инженерной энзимологии, введения в клеточные мембраны молекул зондов, модифицирующих и моделирующих их поверхность. Большой интерес для генной инженерии и медицины представляют работы по введению в клетки при помощи липосом нуклеиновых кислот и вирусов. В липосомы включают митохондриальные компоненты и изучают на таких модельных системах процессы генерации энергии в клетках. Ультра-тонкие искусственные мембранные структуры — полислои Лен-гмюра—Бложе (ПЛБ) — применяют для получения био- и иммуносенсоров. Создаются ПЛБ с иммобилизованными ферментами и компонентами иммунологических систем. При использовании смешанных липид-белковых пленок ПЛБ получают информацию о функционировании белков и о липид-белковых взаимодействиях в мембране. Результаты изучения физических характеристик, проводимости, проницаемости и других свойств искусственных липидных мембран имеют большое зна- [c.216]


    Фракционирование препаратов внутренней мембраны митохондрий из сердца быка привело к разделению митохондриальной электрон-транспортной системы на четыре белково-липидных комплекса  [c.208]

    Протонный насос в отличие от других АТРаз синтезирует АТР благодаря наличию градиента протонов. Данная система выделена из митохондриальной мембраны, частично охарактеризована биохимическими методами и путем анализа реконструированных систем. Методом электронной микроскопии высокого разрешения определена трехмерная структура светозависимого протонного насоса галофильных бактерий. Все эти данные подтверждают ряд выдвинутых ранее гипотез о том, что такие транспортные системы состоят из а-спиральных полипептидных цепей, пронизывающих мембрану. [c.185]

    В цитозоле в этой реакции возникает оксалоацетат, который не имеет транспортных систем возврата внутрь митохондрии, так как мембрана для этого соединения непроницаема. В цитозоле есть фермент - малатдегидрогеназа, восстанавливающая оксалоацетат до малата, который по дикарбоксилат-транспортной системе возвращается в митохондриальный матрикс. Челночный цикл завершается. [c.302]

    Изучение проницаемости внутренней мембраны митохондрий для ионов Са + привело к представлению о существовании в митохондриях специфической транспортной системы. Ее активность ингибируется низкими концентрациями рутениевого красного, катионов семейства лантапидов и гексаминокобальта. Транспорт Са + специфически ингибируется антителами на митохондриальный гликопротеин, который может быть легко экстрагирован из митохондрий с помощью осмотического щока в присутствии ЭДТА. Иммунологические данные не оставляют сомнений в участии этого гликопротеина (м. м. 33 000 Да) в связывании и (или) переносе Са + через мембрану. Система транспорта Са + в митохондриях катализирует также зависимое от энергии поглощение других двухвалентных катионов, но ее специфичность па- [c.453]

Рис. 17-25. Транспортные системы внутренней митохондриальной мембраны, переносящие ADP и фосфат из цитозоля в матрикс, а но-восинтезированный АТР-из матрикса в цитозоль. Рис. 17-25. <a href="/info/185658">Транспортные системы</a> <a href="/info/1900631">внутренней митохондриальной мембраны</a>, переносящие ADP и фосфат из цитозоля в матрикс, а но-восинтезированный АТР-из матрикса в цитозоль.
    В митохондриях печени внутренняя мембрана тоже содержит специфичные транспортные системы. Это системы для переноса пирувата, поступающего в митохондриальный матрикс из цитозоля, в котором он образуется для дикарбокси-латов, таких, как малат и сукцинат, и, наконец, для трикарбоксилатов-цитрата и изоцитрата. В митохондриях есть также транспортные системы, специфичные в отношении аспартата и глутамата. [c.537]


Рис. 13.16. Транспортные системы митохондриальной мембраны. 1—переносчик фосфата, 2—симпорт пирувата, 3 — переносчик дикарбоксилатов, 4—переносчик трикар-боксилатов, 5—переносчик а-кетоглутарата, 6— переносчик адениновых нуклеотидов. Н-Этилмалеимид, гидроксициннамат и атрактилозид ингибируют ( ) указанные системы. Имеются также (на рисунке не показаны) системы переноса аспартата и глутамата (см. рис. 13.15), глутамина, орнитина, карнитина (см. рис. 23.1) Рис. 13.16. Транспортные системы митохондриальной мембраны. 1—<a href="/info/1320371">переносчик фосфата</a>, 2—симпорт пирувата, 3 — переносчик дикарбоксилатов, 4—переносчик трикар-боксилатов, 5—переносчик а-кетоглутарата, 6— переносчик <a href="/info/1402732">адениновых нуклеотидов</a>. Н-<a href="/info/213469">Этилмалеимид</a>, гидроксициннамат и <a href="/info/210772">атрактилозид</a> ингибируют ( ) <a href="/info/1260982">указанные системы</a>. Имеются также (на рисунке не показаны) <a href="/info/103645">системы переноса</a> аспартата и глутамата (см. рис. 13.15), глутамина, орнитина, карнитина (см. рис. 23.1)
    Хотя жидкостно-мозаичную структуру мембраны обычно представляют в виде белковых айсбергов , плавающих в липидном море, в случае сопрягающих мембран это не совсем так. Благодаря высокому содержанию белков (50% внутренней митохондриальной мембраны составляют интегральные белки, 25%—периферические и 25%—липиды) эти мембраны имеют относительно плотную упаковку. Бислойные участки составляют менее 60% мембраны. Различные сопрягающие мембраны имеют несколько разный липидный состав 10% липида внутренней мембраны митохондрий составляет кардиолипин в случае мембраны тилакоидов хлоропластов фосфолипиды составляют лишь 10% липидов, остальные — это галактолипиды (40%), сульфоли-пиды (4%) и фотосинтетические пигменты (40%). Несмотря на такие различия липидного состава, свойства бислойных участков различных мембран в отношении исходной и индуцированной ионофорами проницаемости достаточно сходны. Это позволяет использовать для их описания данные, полученные на искусственных бислойных мембранах. В то же время свойства белковых транспортных систем могут быть уникальными не только для данных органелл, но и для данной ткани. Так, например, внутренняя мембрана митохондрий из печени крысы содержит транспортные системы, которых нет в митохондриях из ее сердечной мышцы (разд. 8.3). [c.31]


Смотреть страницы где упоминается термин Митохондриальная мембрана транспортные системы: [c.511]    [c.137]    [c.226]   
Биохимия человека Т.2 (1993) -- [ c.136 , c.139 ]

Биохимия человека Том 2 (1993) -- [ c.136 , c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Мембрана транспортные системы

Транспортная РНК



© 2025 chem21.info Реклама на сайте