Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транскрипция в эукариотических клетках

Рис. 20.29. Улавливание экзонов. А. Вектор для улавливания экзонов содержит искусственный ген, состоящий из промотора р, двух экзонов, разделенных интроном, который несет полилинкер, и сайта терминации транскрипции 1. После введения вектора в эукариотическую клетку искусственный ген транскрибируется и из первичного транскрипта удаляется интрон. Для получения ПЦР-продукта определенной длины, который содержит часть обоих экзонов, используют ПЦР-амплификацию обратного транскрипта. Рис. 20.29. Улавливание экзонов. А. Вектор для улавливания экзонов содержит искусственный ген, состоящий из промотора р, двух экзонов, разделенных <a href="/info/32966">интроном</a>, который несет <a href="/info/1386520">полилинкер</a>, и сайта <a href="/info/33518">терминации транскрипции</a> 1. После введения <a href="/info/24990">вектора</a> в <a href="/info/283640">эукариотическую клетку</a> искусственный ген <a href="/info/611157">транскрибируется</a> и из <a href="/info/33530">первичного транскрипта</a> удаляется <a href="/info/32966">интрон</a>. Для получения ПЦР-<a href="/info/6221">продукта</a> <a href="/info/6155">определенной</a> длины, который содержит часть обоих экзонов, используют ПЦР-амплификацию обратного транскрипта.

    Один из основных путей адаптации организмов к изменяющимся условиям окружающей среды — регуля щя экспрессии генов. Этот процесс, детально изученный для бактерий и вирусов, заключается в специфическом взаимодействии определенных белков с различными участками ДНК, расположенными рядом с сайтами инициации транскрипции. Такие взаимодействия могут характеризоваться как позитивным (положительным), так и негативным (отрицательным) влиянием на уровень транскрипции. В эукариотических клетках используются и другие механизмы регуляции транскрипции. В контроле экспрессии генов могут участвовать амплификация, генные перестройки, переключение классов и посттранскрипционные модификации. [c.109]

    Транскрипция в эукариотических клетках [c.223]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующего элемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов ( У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. 112, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на 3 -фланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]


    Адаптация организмов к различным воздействиям окружающей среды осуществляется, в частности, путем изменения экспрессии (активности) генов. Этот процесс, в деталях изученный на бактериях и вирусах, включает взаимодействие специфических белков с участками ДНК в непосредственной близости от стартового участка транскрипции. Эукариотические клетки используют этот же принцип, хотя в регуляции экспрессии генов реализуются и некоторые другие механизмы. [c.81]

    Репликация, транскрипция и трансляция геномов органелл. В хлоропластах и митохондриях ДНК представлена небольшими двухцепочечными молекулами, обычно кольцевыми, и не связана с гистонами. Таким образом, генетическая информация органелл содержится в структурах, весьма сходных с хромосомами прокариот, хотя и значительно меньших по размерам. В каждой органелле имеется множество копий ДНК (до 40—50 в некоторых хлоропластах). Кроме того, хлоропласты и митохондрии содержат аппарат транскрипции и трансляции, включая специфические для органелл рибосомы, которые меньше цитоплазматических 808-рибосом и близки по величине к 708-рибосо-мам прокариот. Синтез белка в органеллах ингибируется хлорам нико-лом и некоторыми другими антибиотиками, подавляющими этот процесс и у прокариот, но не влияющими на синтез белка в цитоплазме эукариотической клетки. Таким образом, хлоропласты и митохондрии обнаруживают ряд важных черт фундаментального сходства с прокариотическими клетками. Митохондрии обладают еще одной особенностью, характерной для клеток, но не для других компонентов клетки они образуются путем деления предсуществующих органелл. Это продемонстрировано также в отношении многих типов хлоропластов у водорослей. У высших растений зрелые хлоропласты развиваются из более простых структур — пропластид на стадии пропластид и происходит воспроизводство этих органелл. [c.49]

    Синтез многих ферментов в клетке, по-видимому, почти все время подавлен. Появление специфических ферментов в тот или иной момент времени в организме или в определенной дифференцированной ткани происходит в результате дерепрессии, вызываемой накоплением специфических метаболитов или другими, пока неизвестными факторами. В эукариотических клетках контроль за синтезом ферментов может осуществляться как на уровне транскрипции, так и на уровне трансляции. [c.66]

    Эти примеры, так же как и те, что были рассмотрены ранее, указывают на то, что 5 -фланкирующие последовательности в ряде транскрипционных единиц, вероятно, взаимодействуют с позитивными регуляторными элементами (по всей видимости, белковой природы). Если бы на эти последовательности действовали также отрицательные регуляторные элементы (репрессоры), то можно было бы ожидать, что по крайней мере некоторые мутации, вызывающие делеции или иные изменения в этих последовательностях, приводили бы к конститутивной транскрипции, что противоречит имеющимся фактам. Это, однако, не означает, что в эукариотических клетках вовсе не существует репрессоров. Данные, указывающие на участие репрессоров в регуляции экспрессии у эукариот, будут представлены в этой главе и гл. 17. [c.226]

    Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме) во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными. [c.538]

    Даже самая маленькая эукариотическая клетка в 5—10 раз больше бактериальной и устроена значительно сложнее. В каждой эукариотической клетке транскрибируется только незначительная часть ДНК. В клетках различных тканей транскрипция затрагивает как общие для всех видов клеток данного организма гены, так и специфичные для данной ткани. [c.416]

    В эукариотической клетке ядро служит основным, но не единственным местам хранения наследственной информации. Небольшая в количественном отношении, но функционально очень важная часть клеточного генома находится в митохондриях и в хлоропластах (у фотосинтезирующих организмов). ДНК органелл определяет некоторые (но отнюдь не все) свойства соответствующих органелл. Кроме того, органеллы обоих типов содержат собственные специфические механизмы транскрипции и трансляции. Таким образом, репликация эукариотического генома так же, как транскрипция и трансляция, происходит в двух или трех различных местах в ядре и цитоплазме, в митохондриях и в хлоропластах. Механизмы репликации, транскрипции и трансляции в органеллах несколько отличаются от соответствующих ядерных механизмов. Поэтому свойства каждой из этих двух систем следует рассмотреть по отдельности. [c.48]

    На рис. 18 дана подробная схема процесса транскрипции в эукариотической клетке. [c.41]

    В эукариотических клетках присутствуют и две другие РНК-полимеразы. Полимераза I отвечает за транскрипцию рибосомных РНК. Из-за [c.215]

    Названные выше гены в хромосомной ДНК обладают специфическими функциями (средний размер гена оценивают в 1300 пн) Ген-регулятор определяет синтез белка-репрессора, способного связываться с оператором (см ) на ДНК или с РНК, предотвращая соответственно транскрипцию или трансляцию Ген-оператор — участок ДНК, связываясь с которым белок-репрессор предотвращает инициацию (начало) транскрипции на прилежащем промоторе, ответственном за связывание фермента РНК-полимеразы, инициирующей транскрипцию гена На промоторе гена эукариотической клетки имеется специфический локус (участок), в десятки—сотни тысяч раз повышающий число посадок РНК-полимера-зы на промотор ближайшего гена Этот локус называется энхан-сером, или усилителем (от англ enhan er — усилитель) Энхансеры тканеспецифичны Они представляют собой большую разнообразную группу регуляторных элементов клетки Другими словами это элементы позитивного контроля К элементам негативного контроля относятся сайленсеры (от англ silen er — глушитель), угнетающие транскрипцию Энхансеры и сайленсеры обладают только цис-действием, влияя на гены, локализующиеся на той же молекуле [c.159]


    Сверхчувствительные сайты. Специфические участки ДНК, локализованные в области хроматина, увеличивающие чувствительность этой области к эндонуклеазам. Появление сверхчувствительных сайтов коррелирует с транскрипцией прилежащих участков ДНК эукариотической клетки. [c.315]

    Молекулы предшественников зрелых клеточных РНК подвергаются расщеплению и химической модификации. Совокупность биохимических реакций, в результате которых уменьшается молекулярная масса РНК-предшественника и осуществляются разные способы химической модификации с образованием зрелых молекул РНК, называют процессингом. Процессинг наблюдается и в прокариотических клетках, но особенно аюжны превращения предшественников клеточных РНК в ядрах эукариот. Хромосомы эукариотической клетки, в которых осуществляется транскрипция, локализованы в ядре и отделены двойной ядерной мембраной от цитоплазмы, где протекает трансляция. В ядре синтезируются предшественники всех типов цитоплазматических РНК- Зрелые молекулы РНК транспортируются в цитоплазму. Механизм транспорта РНК из ядра в цитоплазму исследован недостаточно. Полагают, что процессинг РНК с образованием зрелых молекул продолжается и в ходе их транспорта в составе рибонуклеопротендных частиц через поры ядерных мембран. В клетках эукариот только незначительная часть, около 10%, транскрибируемых в ядре последовательностей ДНК выяыяется в составе цитоплазматических мРНК. Основная часть новообразованной РНК распадается в ядре и не обнаруживается в цитоплазме. [c.163]

    В многоклеточных организмах среднее число регуляторных сайтов для одного гена минимум равно пяти положительные регуляторные белки связываются со своими специфическими последовательностями в структуре ДНК (вероятнее всего, посредством водородных связей между амидной группой Глн или Асн и пуриновыми и пиримидиновыми основаниями нуклеотидов). Следует указать еще на один момент, почему эукариотическая клетка использует положительные механизмы регуляции экспрессии генов. Подсчитано, что в геноме человека содержится около 100000 генов, соответственно каждая клетка при отрицательном механизме регуляции могла бы синтезировать 100000 разных репрессоров, причем в достаточных количествах. При положительном механизме регуляции большинство генов в принципе неактивно, соответственно молекула РНК-полимеразы не связывается с промотором и клетка синтезирует ограниченный и избирательный круг активаторных белков, необходимых для инициации транскрипции. [c.538]

    Все функции нуклеиновых кислот в организме осуществляются в комплексах с белками. В то же время лишь некоторые белки аыполняют свои функции в комплексе с нуклеиновыми кислотами. Такие комплексы называются иуклеопротеидами. Одни нуклеопротеиды существуют в течение длительного времени, например хроматин, рибосомы, вирусные частицы. Другие возникают ма короткое время и, выполнив свою функцию, диссоциируют—к ним относятся комплексы, образуемые ДНК- и РНК-полимеразами, регуляторными белками, репрессоры или активаторы и т. п. Нуклеопротеиды осуществляют такие важные процессы в клетке, как репликация, транскрипция и трансляция, транспорт нуклеиновых кислот из ядра в клетку, секреция белков в эукариотических клетках и т. п [c.397]

    Ферменты и прочие белки, участвующие в процессах репликации и транскрипции ДНК, относятся к числу самых замечательных из всех известных биологических катализаторов. Они способны создавать эти гигантские макромолекулы из мононуклеотидо в-предшествен-ников, используя энергию фосфатной группы, и с исключительной точностью осуществлять перенос генетической информации от матрицы к новосинтезируе-мой цепи. Кроме того, при работе этих ферментов должны рещаться сложные механические проблемы, поскольку, прежде чем в дело вступят реплицирующие ферменты, должно произойти расплетание родительской двухцепочечной ДНК так, чтобы ферменты могли получить доступ к информации, закодированной в последовательности оснований внутри двойной спирали. Более того, в эукариотических клетках система репликации тесно связана со сложной трехмерной организацией хроматина и нуклеосом. [c.894]

    Эукариотические гены одних видов были также клонированы и экспрессировались в клетках других видов. Например, ген, кодирующий tx-цепь гемоглобина кролика, был введен в растущие в культуре мышиные клетки и экспрессировался в них. Внедрение чужеродного гена в эукариотические клетки не всегда, однако, сопровождается его транскрипцией и трансляцией с образованием активного белка. Регуляция экспрессии генов у эукариот пока еще мало изучена (разд. 29.22) во время написания этой книги проводится большое число исследований по выяснению условий экспрессии реком-бинантньк генов в эукариотических клетках. [c.988]

    Новые комбинации генов можно создать и искусственным путем в лабораторных условиях с помощью таких ферментов, как рестриктирующие эндонуклеазы, ДНК-лигаза и терминальная трансфераза. Чтобы встроить чужеродный ген в геном клеток Е. соИ, этот ген сначала пришивают к вектору, которым служит либо плазмида Е. соИ, либо ДНК фага Х. Полученная рекомбинантная ДНК может затем попасть в клетку Е. oli, ковалентно включиться в ее хромосому и в составе этой хромосомы реплицироваться. Если новый ген, содержащийся в рекомбинантной ДНК, обладает подходящими сигнальными последовательностями, указывающими начало и конец транскрипции, то такой ген будет транскрибироваться и транслироваться с образованием соответствующего белкового продукта. Многие гены из животных клеток уже были введены в бактерии, а бактериальные гены в свою очередь были встроены в эукариотические клетки. С помощью бактерий, в геномы которых введены соответствующие гены, можно получать применяемые в медицине белковые препараты-инсулин, гормон роста и интерфероны. [c.991]

    ДНК-зависимая РНК-полимераза. РНК-полимераза Е. соИ является мультимерным белком, состоящим из 5 субъединиц двух а, , , ст. Установлено, что -субъединица участвует в связывании с ДНК-матрицей, а-субъединица — в связывании рибонуклеозидтрифосфатов, ст-субъединица - в выборе участка инициации транскрипции. Весь комплекс субъединиц представляет собой холофермент РНК-полимераза без ст-субъединицы — кор-фермент. Каталитический участок фермента находится в кор-ферменте. В эукариотических клетках существует четыре типа РНК-полимераз в ядре — РНК-полимераза I (транскрипция рРНК), РНК-полимераза II (транскрипция мРНК), РНК-полимераза III (транскрипция тРНК), а также еще один тип в митохондриях (хлоропластах). [c.306]

    Первые гены, которые использовались для трансформации растений, были выделены из бактерий, и их нельзя было напрямую использовать для трансформации растительных клеток. Для того чтобы бактериальные гены транскрибировались в эукариотической клетке необходимо заменить их исходные бактериальные промоторные последовательности либо на промоторы растительных генов, либо на другие, которые могут инициировать транскрипцию в растительной клетке. Кроме того, необходимо присоединить к З -последовательности бактериального гена фрагмент, содержащий сигнал полиаденилирования. Такие модификации необходимы для того, чтобы эукариотическая РНК-полимераза могла транскрибировать бактериальную последовательность, и затем мРНК транслировала бактериальный белок в растительной клетке. [c.63]

    Транскрипция-это не единственный способ синтеза РНК. Вирусы, геномы которых состоят из РНК, детерминируют специфические ферменты, осуществляющие различные реакции, но обладающие одним общим свойством способностью синтезировать РНК на матрице, которая сама представлена молекулами РНК. Этот процесс служит как для образования мРНК, необходимой для поддержания инфекционного процесса (транскрипция РНК), так и для воспроизведения вирусного генома (репликация РНК). Это происходит и в прокариотических, и в эукариотических клетках. Однако и в случае (эукариотических) ретровирусов возможна дальнейшая реакция, в которой вирусная РНК используется в качестве матрицы для обратной транскрипции, приводящей к образованию ДНК. [c.132]

    РНК-полимераза Е. соН обеспечивает транскрипцию участков ДНК, несущих информацию о последовательностях молекул РНК всех трех классов рибосомной РНК (рРНК), транспортной РНК (тРНК) и информационной (или матричной) РНК (мРНК). В эукариотических клетках, напротив, имеются три различные РНК-полимеразы, каждая из которых специфически узнает промоторы, контролирующие транскрип- [c.37]

    РНК-полимераза, фермент, катализирующий транскрипцию ДНК, представляет собой сложную молекулу, состоящую из многих полипептидных цепей. В эукариотических клетках обнаружено три РНК-полимеразы 1,11 и 111. Эти ферменты эволюционно связаны друг с другом и с бактериальной РНК-полимеразой, у них имеются одинаковые субъединицы. По-видимому, после инициации транскрипции от каждого фермента отделяются одна ти несколько субъединиц, называемых факторами инициации. Вместо них к ферментам присоединяются субъединицы, называемые факторами элонгации. Они необходимы для удлинения цепи РНК, ее терминации и модификации. Вероятно, факторы элонгации у различных типов полимераз разные, именно этим можно объяснить, почему транскрипты, синтезируемые каждым ферментом, модифицируются по-разному. [c.170]

    В эукариотических клетках ДНК-гираза не обнаружена, а эукариотические ДНК топоизомеразы типов 1 и 11 снимают напряжение, вызванное суперспирализацией. а не усиливают его (см. разд. 5.3.10). Вот почему большая часть ДНК в эукариотических клетках не напряжена. Тем не менее при инициации транскрипции ДНК происходит раскручивание спирали (см. рис. 9-65). Более того, продвижение молекулы РНК-полимеразы (а также других белков) вдоль ДНК приводит к появлению в ее молекуле положительного напряжения перед ферментом и отрицательного за ним (рис. 10-42). Вследствие подобного топологического изменения, событие, происшедшее в единственном сайте ДНК, может привести к возникновению сил, действующих по всей петле хроматина. Остается неясным, приводит ли подобное воздействие к запуску дальнейших событий, что было бы необходимо, если бы топологические изменения действительно имели отношение к контролю экспрессии у эукариотических генов. [c.214]

    Данные по механизмам синтеза белка в митохондриях, полученные за последние примерно два десятилетия, еще более убедительно свидетельствуют в пользу эндосимбиотиче-ской гипотезы [176, 1055, 1620, 1643, 1851, 1999]. Оказалось, что механизмы транскрипции информации с ДНК на РНК и трансляции с РНК на, белок сильно напоминают соответствующие механизмы у бактерий. По крайней мере в животных клетках митохондриальная ДНК, так же как и бактериальная, имеет двухцепочечную кольцевую форму. Рибосомы имеют тот же вес, что и бактериальные рибосомы, а синтез белка подавляется теми же веществами, которые подавляют синтез белка у бактерий однако соединения, подавляющие управляемый ядром синтез белка в эукариотических клетках, не влияют на митохондриальный синтез белка. [c.186]

    Маллиган и Берг (Mulligan, Berg, 1981) показали, что ген бактериальной ксантин — гуанин-фосфорибозилтрансферазы (часто называемый геном gpt) в комбинации с эукариотическими последовательностями, контролирующими транскрипцию, может функционировать в эукариотических клетках, придавая этим клеткам устойчивость к такому антибиотику, как мико- [c.39]


Смотреть страницы где упоминается термин Транскрипция в эукариотических клетках: [c.207]    [c.206]    [c.122]    [c.7]    [c.207]    [c.416]    [c.422]    [c.338]    [c.38]    [c.208]    [c.94]    [c.145]    [c.207]    [c.120]    [c.120]    [c.40]   
Смотреть главы в:

Биохимия Том 3 -> Транскрипция в эукариотических клетках


Биохимия Том 3 (1980) -- [ c.223 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Эукариотические клетки



© 2025 chem21.info Реклама на сайте