Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопередача теплопроводностью остаточных газов

    Вакуумно-порошковая изоляция не требует создания высокого вакуума, она отличается простотой монтажа. В случае применения тсплоизолируюшего порошка теплопередача остаточным газом резко сокра-шается уже в вакууме 0,133—1,33 Па, который легко достигается обычным механическим вакуум-насосом. В качестве теплоизолируюших порошков используют аэрогель кремневой кислоты, перлит, силикат кальция и др. Для повышения эффективности порошков к ним в качестве экранирующих компонентов добавляют алюминиевую, медную или бронзовую пудру. Эти добавки в 3—4 раза снижают теплопроводность порошковой изоляции. Эффективность изоляции повышается также введением порошков, поглощающих излучение, например — газовой сажи. [c.502]


    Обладающий большой плотностью слоистый изоляционный материал из алюминиевой фольги и стекловолокна примерно в 35 раз более эффективен в отношении уменьшения теплопередачи, чем лучшие стандартные системы порошковой изоляции [130]. Еще большая эффективность многослойной изоляции достигается при работе ее под вакуумом. Это объясняется тем, что при давлениях ниже 0,0001 мм рт. ст. перенос тепла за счет теплопроводности остаточного газа практически равен нулю [121, 133]. [c.120]

    В связи с вышеизложенным ясно, что коэффициент теплопроводности конденсата в уравнении (5.52) является термической характеристикой не монолитного тела, а высокодисперсного материала [19]. Этот материал — конденсат состоит из остова — скелета, представляющего собой совокупность огромного количества твердых частиц — кристалликов, разделенных между собой промежутками, заполненными остаточным газом. В таком сложном материале теплопередача уже не ограничивается одной теплопроводностью твердого тела, а осуществляется посредством переноса тепла вдоль отдельных частиц — элемента твердого скелета материала передачи тепла, благодаря теплопроводности от одной твердой частицы к соседней в местах их непосредственного контакта теплопроводности остаточного газа в порах и пустотах между частицами излучения от частицы к частице. [c.150]

    Теплопередача в аппаратах с вакуумной изоляцией происходит, в основном, путем излучения, а также за счет теплопроводности остаточных газов и практически не зависит от толщины слоя изоляции (расстояние между теплообменивающимися стенками). [c.43]

    С помощью высокого вакуума может быть получена эффективная теплоизоляция, исключающая два существенных способа теплопередачи конвекцию и перенос тепла за счет теплопроводности. Теплопередача через пространство с высоким вакуумом определяется главным образом излучением, переносом тепла остаточными газами и теплопроводностью опорных элементов конструкции [6, 119]. [c.106]

    Повышение эффективности вакуумной изоляции связано с уменьшением теплопередачи теплопроводностью остаточных газов и излучением. ЧИнижение первого вида переноса тепла может быть достигнуто, в частности, путем увеличения отношения Ь/й за счет получения более высокого вакуума или уменьшения расстояния между теплообменивающимися [c.397]


    Обладающий большой плотностью слоистый изоляционный материал из алюминиевой фольги и стекловолокна примерно в 35 раз сильнее уменьшает теплопередачу, чем лучшие стандартные порошковне системы изоляции [ II]. Еще большая эффективность многослойной изоляции достигается при работе ее под вакуумом, так как при давлениях ниже 13,3 Па перенос тепла за счет теплопроводности остаточного газа становится пренебрежимо малым. Поэтому многослойную изоляцию, работающую в условиях глубокого вакуума, называют также многослойно-вакуумной или экранно-вакуумной изоляцией. Скорость испарения в сосудах со сжиженными газами при этом виде изоляции в 20 раз меньше, чем в случае обычных видов порошково-вакуумной изоляции [тз]. По данным 7], коэффициент теплопроводности у лучших образцов многослойно-вакуумной изоляции примерно в 8 раз ниже, чем у вакуумно-порошковой изоляции, экранированной металлическими поротками. Однако при давлениях более 1,3 кПа применение дорогостоящего ламинированного материала дает мало преимуществ перед порошковой изоляцией. Креме того, применение многослойной изоляции требует довольно сложной техники высокого вакуума. [c.150]

    Теплопроводность остаточного газа. При давлениях ниже 10 мм рт. ст., согласно кинетической теории, передача тепла остаточным газом прямо пропорциональна давлению. В таких условиях молекулы сталкиваются со стенками чаще, чем между собой, и для расчета теплопередачи можно воспользоваться формулой Кнудсена [8] для переноса тепла отдельными молекулами. В случае длинных коаксиальных цилиндров формула Кнудсена имеет следующий вид )  [c.322]

    В изоляции этого типа конвективный теплообмен устраняется вакуумированием. Теплопередача определяется лучеиспусканием и теплопроводностью остаточных газов. Чтобы уменьшить тепловое излучение, поверхности полируют и выполняют из материалов с малой степенью черноты (с.м. стр. 140). Другим способом уменьшения притока лучистого тепла является применение экранов. В установках для ожижения водорода и гелия и в сос дах для ил хранения очень часто осуществляется экранирование поверхностями, охлаждаемыми жидким азотом. Приток лучистого тепла пропорционален четвертой степени температуры, и охлаждение экрана жидким азотом снижает его примерно в 150—200 раз. Другой способ, используемый в танках и крио-статах, заключается в охлаждении экрана парами ожиженного газа, находящегося в сосуде [А-104], что упрощает конструкцию сосуда для хранения. Применяется также экранирование плавающими подвешенными экранами, очень слабо контактирующими со смежными оболочками. Введение одного экрана той же степени черноты, какой обладают и стенки, снижает теплоприток вдвое, двух экранов — втрое и т. п., а при наличии п экранов — в (га+1) раз. Экранированию жидким азотом соответствует 150—200 плавающих экранов. Конструктивно такую теплоизоляцию можно осуществить, окружая низкотемпературные части пакетом из многих слоев гофрированной алюминиевой фольги — это так называемая альфолевая изоляция. В технике глубокого охлаждения альфолевая теплоизоляция распространения не получила. [c.220]


Смотреть страницы где упоминается термин Теплопередача теплопроводностью остаточных газов: [c.388]    [c.173]    [c.173]    [c.233]   
Справочник по физико-техническим основам глубокого охлаждения (1963) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Остаточных газов

Теплопередача

Теплопередача теплопроводности

Теплопередача теплопроводность газа

Ток остаточный



© 2025 chem21.info Реклама на сайте