Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез у эукариотических водорослей

    Фотосинтез у эукариотических водорослей [c.351]

    Эукариотические водоросли живут в различных местообитаниях и характеризуются большой вариабельностью показателей роста, поэтому нет ничего удивительного в том, что у некоторых видов наряду с различиями в пигментации обнаруживаются и некоторые различия в составе переносчиков электронов и в их последовательности в электронтранспортной цепи. Большое разнообразие наблюдается также и в путях метаболизма углерода. Подробно в этом отношении было изучено лишь несколько видов водорослей поэтому не исключено, что многие отклонения от фотосинтеза по типу высших растений остаются пока неоткрытыми. [c.353]


    В современном мире существуют два существенно различных по внутренней архитектуре типа клеток. Более сложная эукариотическая клетка является структурной единицей у растений, многоклеточных животных, простейших, грибов и всех групп, которые обычно относили к водорослям, кроме одной. Несмотря на крайнее разнообразие эукариотических клеток, обусловленное их специализацией в ходе эволюции этих групп, а также модификациями, которые они претерпевают во время дифференцировки у растений и животных, в основной архитектуре таких клеток всегда имеется много общих черт. Менее сложная прокариотическая клетка является структурной единицей у двух групп микробов у бактерий и у тех организмов, которые раньше называли сине-зелеными водорослями. Сине-зеленые водоросли обладают таким же механизмом фотосинтеза, как и эукариотические водоросли, но он происходит в клетке, имеющей совершенно иную тонкую структуру. Поэтому объединение так называемых сине-зеленых водорослей с эукариотическими водорослями уже нельзя считать оправданным, и они рассматриваются как одна из групп фотосинтезирующих бактерий — цианобактерии. [c.6]

    Чем еще различаются процессы фотосинтеза у бактерий и у сине-зеленых водорослей или эукариотических растений  [c.76]

    Некоторые виды зеленых и других водорослей могут после соответствующего периода адаптации начать фотовосстановление СОг с помощью газообразного водорода как фотосинтезирующие бактерии, иными словами, у них появляется латентная в других условиях гидрогеназа [214, 633, 652, 654, 656, 983, 1707, 1771, 1813, 1814]. У таких растений протекают фотофосфорилирование и цикл Кальвина [705, 1582], но у них нет явления усиления интенсивности фотосинтеза [704] по-видимому, водород непосредственно попадает в фотосистему I. В отсутствие СОг некоторые водоросли могут выделять Нг на свету [76, 654, 661, 686]. Прокариотические и эукариотические растения могут до некоторой степени использовать на свету в качестве донора электронов HsS, хотя фотосистема II им, по-видимому, все-таки нужна [1018, 1801]. Длительное освещение хлоропластов красным светом, вероятно, подавляет эффект усиления у растений, например у элодеи [1489, 1490]. [c.133]

    Взаимное влияние фотосинтеза и дыхания наблюдалось также у сине-зеленых водорослей [292, 606, 1423, 1425]. Более слабая связь между этими процессами у эукариотических растений, несомненно, является следствием разделения митохондрий и хлоропластов, в результате которого и те в другие имеют четко определенные функции. В эукариотических растениях могут одновременно протекать процессы фотосинтеза и дыхания с максимальной интенсивностью, причем в обоих случаях будет синтезироваться АТФ. [c.149]


    У таких растений протекают фотофосфорилирование и цикл Кальвина [705, 1582], но у них нет явления усиления интенсивности фотосинтеза [704] по-видимому, водород непосредственно попадает в фотосистему I. В отсутствие СОг некоторые водоросли могут выделять Нг на свету [76, 654, 661, 686]. Прокариотические и эукариотические растения могут до некоторой степени использовать на свету в качестве донора электронов HsS, хотя фотосистема II им, по-видимому, все-таки нужна [1018, 1801]. Длительное освещение хлоропластов красным светом, вероятно, подавляет эффект усиления у растений, например у элодеи [1489, 1490]. [c.133]

    Фотохимическое восстановление СОг в органические соединения слу-, жит основным источником энергии для биосферы, несмотря на то что к числу организмов, в которых идет этот процесс, относится лишь несколько родов фотосинтезирующих бактерий (табл. 1-1) (включая сине-зеленые водоросли), а также эукариотические водоросли и высшие зеленые растения. Теперь уже повсеместно признано, что в ходе фо-топроцессов в этих организмах генерируются NADPH (или восстановленный ферредоксин) плюс АТР (гл. И, разд. Г, 2) [77—79]. Однако эта точка зрения далеко не всегда представлялась очевидной. Рассмотрим суммарную реакцию образования глюкозы в ходе фотосинтеза у высших растений  [c.36]

    Светочувствительные пигменты входят в состав фотосинтети-ческого аппарата высших растений, водорослей и фотосинтезирующих бактерий. В эукариотических клетках пигменты находятся в окрашенных пластидах — хлоропластах, у сине-зеленых водорослей — в тилакоидных структурах, у фотосинтезирующих бактерий — в специализированных органеллах мезосомах. Кроме того, эти пигменты встречаются в других структурах, не имеющих отношения к фотосинтезу, например в хромопластах и их предшественниках (этиопластах). [c.267]

    Можно думать, что ранние протоводоросли [469, 470] еще не были способны к дыханию, а могли только переносить присутствие кислорода. По-видимому, такие организмы вымерли. В настоящее время не известны такие сине-зеленые водоросли (или другие растения), которые не были бы способны получать энергию путем дыхания, хотя, насколько известно, цикл лимонной кислоты у сине-зеленых водорослей неполон [1737]. Более того, редко наблюдался настоящий рост растений без кислорода. Даже зеленые водоросли [1339], адаптированные к водороду и не высвобождающие кислород 12, Ж), не могут расти без кислорода. Но быть может, кислород нужен не для дыхания, а для биосинтеза. Некоторое растения предпочитают пониженные давления кислорода [1801]. Но, как бы там ни было, прокариотические и эукариотические растения могут утрачивать фотосинтез и хлорофилл и жить только на дыхании 12, Е, 14, Е) [33, 1477—1479]. [c.141]

    Почему в схеме Маргулис приобретение дыхания предшествует приобретению подвижности посредством жгутиков или ресничек По-видимому, для такой подвижности и, следовательно, для развития митоза требовалось улучшение энергоснабжения, что и было осуществлено посредством дыхания. Дышащие бактерии могли жить только в кислородной атмосфере, т. е. лишь тогда, когда за счет фотосинтеза, протекающего у сине-зеленых водорослей, образовалось большое количество свободного кислорода следовательно, симбиоз с этими бактериями мог возникнуть только после того, как у растений появился фотосинтез (фитотрофия). Но сначала не было фотосинтезирующих симбиотических организмов. Нефотосинтезирующие эукариоты развились, не имея никаких фотосинтезирующих эукариотических предков. Таким образом, согласно Маргулис, последовательность событий была следующей  [c.195]

    Эту главу, в которой собраны довольно разрозненные сведения о различных процессах, шедших на заре развития жизни, можно заключить короткой заметкой о сине-зеленых водорослях. Это довольно разнородная группа прокариотических организмов. Отдельные виды сине-зеленых водорослей сильно различаются по способам метаболизма. Но для нас важнее всего, что они обладают хлорофиллом, и, значит, способны к фотосинтезу [4, 3]. Из прокариотических фотосинтезирующих организмов наших дней сине-зеленые водоросли — самые важные. К тому же они фотолитотрофы. Хотя, как мы узнали из разд. 7 этой главы, ранняя жизнь, видимо, была фото органо трофной, производство кислорода должно было усилиться с появлением фотолитотрофов. Сейчас общепринято мнение, что сине-зеленые водоросли или другае, более примитивные организмы, родственные или не родственные им, но имеющие сходный обмен, сыграли ваншую роль в создании кислорода нашей атмосферы. Следующая стадия началась лишь с появлением эукариотической клетки и наших современных эукариотических зеленых растений. Как мы увидим, в гл. XIV, разд. 12, внешнее сходст- [c.157]


Смотреть страницы где упоминается термин Фотосинтез у эукариотических водорослей: [c.339]    [c.351]    [c.196]    [c.196]    [c.14]    [c.328]    [c.315]    [c.54]    [c.9]    [c.193]    [c.346]   
Смотреть главы в:

Биохимия природных пигментов -> Фотосинтез у эукариотических водорослей




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте